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Although reasons are not understood, a decline in larval supply to the Bay is one 

hypothesized explanation.  The objective of this thesis was to evaluate levels and 
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during three years at monthly intervals from fall through spring (2005-06, 2006-07, and 

2007-08).  The concentrations of ingressing larvae were estimated for each year and also 

for months within each year.  Larval spatial and temporal distributions at the Bay mouth 

were evaluated with respect to tides and day-night differences.  Age, growth rates and 

hatch dates were determined from otolith-aged larvae and compared among years and 

months.  Larvae were most abundant in 2007-08, but grew fastest in 2006-07.  Most 

ingressing larvae hatched in the November to December period.  Copepods were the 

dominant prey in diets of larval menhaden.   
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Chapter 1: Background and Introduction  

 

 The Atlantic menhaden Brevoortia tyrannus is an abundant clupeid fish, 

distributed from Florida to Nova Scotia on the North American east coast (Hildebrand 

1948; Hildebrand 1964; Reintjes 1960; Reintjes 1964; Reintjes 1969; MDSG 2009).  It is 

both economically and ecologically important, supporting the largest commercial fishery 

on the east coast and also serving as a forage base for many piscivorous predators.  

Recruitment levels of Atlantic menhaden have fluctuated during the past 50 years.  

Recruitment was high in the 1970s and 1980s, but has been low for two decades, a cause 

of concern for fishery managers and ecologists who recognize the important ecological 

services provided by menhaden (MDSG 2009; ASMFC 2010).  The causes of recent low 

recruitments are not known.   

 My thesis addresses larval ingress from offshore spawning grounds to Chesapeake 

Bay, which historically has been the major juvenile nursery for menhaden on the Atlantic 

coast (MDSG 2009).  The objectives of my research are: 1) to quantify ingress and 

evaluate its inter-annual and seasonal variability, 2) describe spatial distribution of larvae 

at the Chesapeake Bay mouth during ingress and evaluate it with respect to hydrological 

and physical factors, 3) describe age and growth of ingressing larval menhaden at the 

Chesapeake Bay mouth, 4) determine hatch dates of ingressing larvae, 5) describe and 

characterize ontogenetic stages of Atlantic menhaden at ingress, 6) document the diet and 

feeding of Atlantic menhaden at the Chesapeake Bay mouth and evaluate temporal 

variability.    
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Atlantic Menhaden Early Life Stages 

Atlantic menhaden spawns offshore on the continental shelf over a broad range 

from New England to the Carolinas (MDSG 2009).  Larvae enter the Chesapeake Bay 

and other estuaries, which serve as nursery grounds for young-of-the-year Atlantic 

menhaden.  The Chesapeake Bay is a major nursery.  Chesapeake Bay and other estuaries 

provide physical, chemical, and biological conditions, including high productivity, that 

are favorable for young-of-the-year juvenile menhaden (Reintjes and Pacheco 1966).  

Atlantic menhaden are abundant in Chesapeake Bay, playing an important role in the Bay 

ecosystem as well as supporting its largest fishery.   

 Atlantic menhaden larvae begin their lives in the coastal ocean as visual 

zooplankter-feeding predators and later, after entering estuaries, shift to a filter-feeding 

diet (June and Carlson 1971).  The shift comes after metamorphosis, in the transition 

from the larval to the juvenile stage when menhaden are approximately 38 to 40 mm in 

length (June and Carlson 1971; Lewis et al. 1972).  During metamorphosis major 

morphological changes occur in the gill structure.  The branchial baskets develop 

specialized gill rakers with filamentous branchiospinules.  These structures act as a 

“sieve” to filter food particles from the water (June and Carlson 1971; Friedland 1985; 

Friedland et al. 2006).   

  Atlantic menhaden also is a key forage species in the Chesapeake Bay.  Juvenile 

menhaden are seasonally abundant and important prey for numerous recreationally and 

commercially sought fishes in the Chesapeake Bay, including striped bass (Morone 

saxatilis), bluefish (Pomatomus saltatrix), weakfish (Cynoscion regalis), and Spanish 

mackerel (Scomberomorus maculatus) (Lippson 1991; Uphoff 2003).  Along the Atlantic 
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coast menhaden is prey to additional species, including tunas and sharks (Rogers and Van 

Den Avyle 1989).  Additionally, menhaden is important in diets of mammals and many 

birds (Reintjes 1969; Ahrenholz 1991; Lippson 1991; Viverette et al. 2007).  The trophic 

position of filter-feeding Atlantic menhaden supports a direct energetic link from primary 

production to higher trophic levels (Rogers and Van den Avyle 1989).   

Menhaden supports the single largest fishery in the Chesapeake Bay and accounts 

for as much as 87 percent of total commercial landings in Virginia (Kirkley 1997).  

Annual catches exceeded 100,000 tons from the 1980s through the 1990s (Smith 1999).  

Reedville, VA, is home-base to the single, industrial-scale purse-seine fishery for Atlantic 

menhaden on the east coast (MDSG 2009).  Most of the fishing effort takes place in or 

near Chesapeake Bay, with historical annual catches averaging 154,980 tons 

(Blankenship 2010).  Reduction of menhaden to meal and oil mostly produces various 

animal feeds and supplements, and the human health supplement, omega-3 fatty acids 

(Blankenship 2010).  A pound net and small-boat purse-seine fishery in Chesapeake Bay 

lands menhaden for bait to be utilized in commercial and recreational fisheries (MDSG 

2009).   

 

Menhaden recruitment to Chesapeake Bay 

  A steep decline in age-0 menhaden recruitment level occurred in the Chesapeake 

Bay from the early 1990s to the present (MDSG 2009).  The decline in recruitment levels 

continued despite evidence that the Atlantic coast-wide menhaden spawning stock 

population remained above or near target levels based on fisheries stock assessments 

(ASMFC 2010).  Recruitment level of age-0 menhaden in the Chesapeake Bay appears to 
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have stabilized at a low level since 1992 (Figure 1.1).  This present low level of 

menhaden recruitments in the Bay is not unique.  Menhaden also experienced a period of 

low recruitments from 1959 through 1970.   

There are concerns regarding localized depletion of Atlantic menhaden in 

Chesapeake Bay because recruitment remains low.  Research on localized depletion and 

its causes, including intense localized fishing, is ongoing.  There is potential for localized 

depletion but it has not been demonstrated with certainty (Haddon 2009; Maguire 2009).  

Responding to concerns, ASMFC placed a cap on annual menhaden landings from the 

Chesapeake Bay purse-seine reduction fishery (ASMFC 2006).  The cap limits harvest of 

menhaden in the Bay to 109,020 metric tons for eight years from 2006 to 2013 (ASMFC 

2009).   

Proposed explanations for causes of the low recruitments in the Chesapeake Bay 

are not based on research results.  One hypothesis is that predation-caused natural 

mortality of age-0 menhaden has increased in the Bay.  The striped bass, a key predator 

of menhaden in the Bay and coastwide, has recovered since a decline in abundance in the 

1970s-1980s (Richards and Rago 1999) and has reached historical population highs since 

the early 1990s.  Increased predation on menhaden by striped bass may have increased 

the natural mortality rate of YOY menhaden, reducing recruitment potential (Vaughan et 

al. 2002; Uphoff 2003; MDSG 2009).  Uphoff (2003) noted a decrease in supply of age 

0-2 menhaden as early as 1998, following an increase in potential consumption by the 

recovered striped bass population.  Another possible explanation for low YOY menhaden 

recruitment and localized depletion is an increase in disease mortality (Kane et al. 1998, 

2007)  
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Recruitment levels in menhaden are thought to depend on environmental 

conditions and their variability (AMAC 2000; MDSG 2009).  The early life stages in the 

Atlantic menhaden life cycle are vulnerable to physical, biological, and environmental 

conditions.  Offshore mortality from predation, starvation, or hydrological stress may 

occur during the egg or early larval stages although there are no estimates of such 

mortality.  Instantaneous mortality rates of late-staged menhaden larvae ranged from 

0.038 to 0.056 d-1 in mesocosm experiments (Keller et al. 1990).  In the laboratory, 

larval Atlantic menhaden experience high mortality rates at temperatures of ≤ 5 degrees 

Celsius (Lewis 1965).  However, living late-stage larvae have been collected inside the 

Chesapeake Bay at temperatures ≤ 2 °C (Massmann et al. 1962; Houde et al. 2010).   

It has been hypothesized that a decrease in the larval supply of Atlantic menhaden 

to Chesapeake Bay or a decline in survival of juveniles in the Bay are possible causes of 

recent low recruitments.  Atlantic menhaden in the Chesapeake Bay are part of a single 

stock that ranges from Nova Scotia to Florida (Reintjes 1969; Ahrenholz 1991; Lynch 

2010; MDSG 2009).  Most spawning occurs offshore over the continental shelf, primarily 

during a 4-6 month period from fall through winter (Warlen 1994).  In early fall adults 

begin a southward migration from waters in the northern part of the range that culminates 

in December south of Cape Hatteras (Roithmayr 1963; Nicholson 1971; Dryfoos et al. 

1973; Kroger and Guthrie 1973; Ahernholz 1991; Warlen 1994).  The population is 

believed to spawn as it migrates, with most spawning occurring from the Mid-Atlantic to 

the Carolinas.  Hatching occurs offshore and larvae must be transported to estuarine 

habitats where they ingress before metamorphosing to the juvenile stage.  Spawning 

temperatures generally must be ≥ 15 °C (Stegmann and Yoder 1996; Stegmann et al. 
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1999).  In the laboratory, declines in temperature from 18 to 14 °C sharply reduce the 

ability of menhaden females to spawn (Fitzthugh and Hettler 1995).   

Many estuarine-dependent species including Atlantic menhaden, Atlantic croaker 

(Micropogonias undulatus), spot (Leiostomus xanthurus), and southern (Paralichthys 

lethostigma) and summer flounder (P. dentatus) spawn in the offshore environment, 

mostly during winter, relying on transport to deliver their larvae to estuaries (Miller et al. 

1984).  Miller et al. (1984) hypothesized that increased survival at low rations under cold 

temperatures and reduced predation pressure are potential benefits to winter spawning.  

More importantly, shoreward currents provide favorable conditions for estuarine 

transport in the winter (Miller et al. 1984).  Tidal-stream transport (Arnold 1981; Beckley 

1985; Forward and Tankersley 2001) and responses to passive buoyancy (Miller 1988; 

Epifanio and Garvine 2001) have been proposed as mechanisms for larval transport.  

Spring-spawned fishes such as bluefish rely on transport along the outer shelf associated 

with the Gulf Stream (Lee and Atkinson 1983; Hare and Cowen 1996) whereas winter-

spawned fishes are more influenced by mid- to outer shelf processes (Epifanio and 

Garvine 2001).  Larval transport has been reported as a two-phase process (Boehlert and 

Mundy 1988; Warlen 1992).  Larvae are transported initially at a fast rate to the 

nearshore environment (Warlen 1992).  Transport thereafter is at a slower rate and relies 

on estuarine flow dynamics.   

 Transport of larval menhaden and subsequent ingress into estuaries are thought to 

be dependent on physical processes that affect transport and survival.  The offshore 

environment presents numerous obstacles that challenge successful transport to an 

estuary.  Offshore feeding of larval menhaden has yet to be studied.  However, in the 
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laboratory, temperature has been demonstrated to influence growth and survival of larvae 

(Powell and Phonlor 1986).  Early-stage larvae have limited swimming capability and 

thus rely on water currents for transport.  Hydrographic conditions and climate patterns 

likely govern the transport of larval menhaden. Wind regimes may be especially 

important when considering inter-annual and decadal scale variability in transport.  

Research results suggest that transport to estuary mouths is quite rapid.  Larvae 

reportedly reached estuaries in about 45 to 60 days after hatching (Reintjes 1969; 

Ahrenholz 1991; Warlen 1992; Warlen et al. 2002).   

 Few studies have investigated the movement of larval menhaden into the 

Chesapeake Bay.  Kendall and Reintjes (1975) reported inter-annual variability in the 

timing of menhaden ingress into mid-Atlantic estuaries.  Hare et al. (2005) in a two-day 

survey evaluated larval ingress of three offshore spawned fishes, including Atlantic 

menhaden, with respect to physical processes near the Chesapeake Bay mouth.  Their 

results suggested that ingress of Atlantic menhaden is mostly influenced by wind driven 

flux and tidal residual bottom inflow.  However, they suggested that behavioral responses 

by larvae to physical forces, and not physical forces alone, influence transport into an 

estuary.  Behavioral responses in vertical positioning of Atlantic menhaden larvae with 

respect to physical conditions at the mouths of estuaries have been observed in studies on 

ingress into North Carolina estuaries (Hettler and Hare 1998; Forward et al. 1999a; 

Forward et al. 1999b).   
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Thesis Chapters   

 My research focused on larval ingress of Atlantic menhaden at the mouth of the 

Chesapeake Bay.  The thesis describes and quantifies important biological and ecological 

features associated with ingress.  Chapters 2 and 3 are written as stand-alone chapters, 

anticipating eventual publication in peer-reviewed journals.  Chapter 4 summarizes and 

synthesizes findings.    

 

Chapter 1.  Introduction   

 This chapter is primarily background information on Atlantic menhaden and 

recruitment variability.  An introduction to menhaden early life history and issues related 

to larval ingress are provided.   

 

Chapter 2.  Larval Ingress and Ingress Variability   

 This chapter addresses larval ingress of Atlantic menhaden and ingress variability.  

It includes an evaluation and discussion of inter-annual and monthly ingress variability, 

based on 18 research cruises and surveys to the Chesapeake Bay mouth from December 

2005 to April 2008.  Abundances of ingressing larvae, variability in ingressing numbers 

and the distributions of ingressng larvae across the Chesapeake Bay mouth were analyzed 

with respect to hydrography and environmental factors.   
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Chapter 3.  Age, growth, hatch dates, and feeding by ingressing Atlantic menhaden 

larvae   

 The third chapter has two components: the first is age and growth of Atlantic 

menhaden larvae and the second is foods and feeding of the larvae at the Bay mouth.  In 

this chapter inter-annual and monthly age variability, indicators of the offshore-to-estuary 

transport period, is evaluated.  In addition, inter-annual variability in hatch dates and 

hatch-date distributions are determined for research conducted from 2005-2008.  Growth 

and growth variability of larval menhaden during the transport period are reported and 

discussed.  Finally, diets of larval menhaden at the Chesapeake Bay mouth are reported 

and discussed in relation to available zooplankton prey.   

 

Chapter 4.  Summary and conclusions  

 The final chapter is a summary, providing conclusions and presenting a synthesis 

of findings and implications of the research.  In this chapter, the supply of larval 

menhaden is discussed in relation to observed recruitment levels of young-of-the-year 

menhaden in Chesapeake Bay.   
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Figure 1.1. Maryland age-0 Atlantic menhaden recruitment index from MD DNR seine 
survey.  Five river systems in the Maryland portion of the Bay were sampled by MD 
DNR during the survey (http://dnr.maryland.gov/fisheries/juvindex/index.asp).  The 
metric was area-weighted by river system to produce this time series.   
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Chapter 2: Ingress of Atlantic menhaden Brevoortia tyrannus larvae into 

Chesapeake Bay 

 

Abstract   

 

Annual recruitment levels of young-of-the year (YOY) juvenile Atlantic menhaden to 

Chesapeake Bay have remained low following a decline that began in the 1980s. 

Although reasons are not yet understood, a decline in larval supply to the Bay is one 

hypothesized explanation. In a three-year survey, nine-fold variability in abundance of 

ingressing larvae was observed.  Larvae were more abundant in 2007-08 (8.44 larvae/m3 

± 2.08 se) than in 2005-06 (2.32 larvae/m3 ± 0.42 se) or 2006-07 (0.90 larvae/m3 ± 0.17 

se). Variability in larval concentrations among months was higher than that among years. 

Mean larval concentrations did not differ significantly across the 20-km-wide 

Chesapeake Bay mouth. Mean lengths of larvae collected at the south side of the Bay 

mouth were larger than larvae at other sites. Mean concentrations of larvae were higher in 

night catches than day catches in 2006-07 and 2007-08, but not in 2005-06. Mean lengths 

of larvae collected at night were longer than larvae collected during the day. Larval 

concentrations differed significantly among tide stages but the patterns differed among 

years and among months within year. Larval concentrations at the Chesapeake Bay 

mouth in the three years were not concordant with subsequent age-0 juvenile recruitment 

indices.  
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Introduction 

 

 Atlantic menhaden spawns offshore on the continental shelf.  Recruitment 

depends on successful transport of larval menhaden to estuaries where they spend the 

first year of juvenile life.  Recruitment levels of age-0 menhaden in the Chesapeake Bay 

have remained low since a steep decline in the mid-1980s (ASMFC 2004; 2010; MDSG 

2009).  There are several hypotheses to explain low recruitments (ASMFC 2004).  

Among them is a decline in the supply of larval Atlantic menhaden from offshore waters 

where they begin their lives.  Atlantic menhaden in the Chesapeake Bay are part of a 

single coastwide population that ranges from Nova Scotia to Florida (Hildebrand 1948; 

Hildebrand 1964; Reintjes 1960; Reintjes 1964; Reintjes 1969; MDSG 2009).  The 

complexities of the Atlantic menhaden life cycle likely contribute to variability in early 

life survival, distribution, and recruitment of juveniles to Atlantic coast estuaries.   

 During summer the adult population is distributed throughout its range along the 

Atlantic coast from Florida to Nova Scotia, with older age classes predominating to the 

north and younger ages to the south (June and Reintjes 1960; June 1961; June and 

Nicholson 1964; Rogers and Van Den Avyle 1989).  Higham and Nicholson (1964) noted 

that spawning occurs in every month of the year, mostly by age-3+ menhaden.  These 

authors suggested that, because of the geographical age distribution, menhaden spawning 

occurs mostly in the northern reaches of its range during the summer, as proposed by 

Judy and Lewis (1983) based on their study of seasonal and spatial distributions of eggs 

and larvae along the Atlantic coast.  By early fall the adult component of the population 

begins to migrate southward (Roithmayr 1963; Reintjes 1969; Nicholson 1971; Dryfoos 
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et al. 1973; Kroger and Guthrie 1973; Ahernholz 1991; Warlen 1994).  Spawning 

intensifies along the mid-Atlantic coast and in the South Atlantic Bight during this 

migration and has been proposed to be at its peak when menhaden reach the waters south 

of Cape Hatteras in December (Higham and Nicholson 1964; Judy and Lewis 1983).   

 Larval menhaden are advected to the mouths of estuaries just prior to 

transformation to the juvenile stage (Reintjes 1969; Ahrenholz 1991; Warlen 1994).  

Menhaden eggs hatch offshore (Reintjes 1969; Maillet and Checkley 1991; Warlen 1992, 

1994).  In the offshore environment, larval fishes, including menhaden, have limited 

swimming capability (Shanks 1995) and thus are dependent on ocean circulation for 

transport to estuaries (Hare et al. 1999; Quinlan et al. 1999; Rice et al. 1999; Stegmann et 

al. 1999; Werner et al. 1999).  Research on the duration of transport, based on estimated 

age-at-ingress, has indicated that most menhaden larvae that ingress into estuaries in 

North Carolina had transport periods of more than one month duration and a mean period 

of two months (Warlen 1992, 1994; Warlen et al. 2002).  At ingress, menhaden larvae are 

> 20 mm total length (TL) and presumably have considerable horizontal swimming 

capability (Warlen 1992, 1994; Shanks 1995; Warlen et al. 2002).  It is hypothesized that, 

under unfavorable environmental conditions, including extreme cold temperatures in 

winter, larval menhaden may grow slowly and mortality may increase, leading to variable 

offshore survival and supply to estuaries (Lewis 1965; Powell and Phonlor 1986).   

 Research conducted by the SABRE program investigated transport duration, 

transport trajectories, hydrographic influences, and the importance of larval behavior by 

developing linked, individual-based bio-physical models (Hare et al. 1999; Quinlan et al. 

1999; Rice et al. 1999; Stegmann et al. 1999; Werner et al. 1999).  The SABRE team 
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suggested that transport of menhaden larvae in the near-shore coastal ocean results in 

dispersal of larvae primarily along-shore and southward (Quinlan et al. 1999), implying 

that a substantial proportion of spawning and early larval development takes place in the 

Mid-Atlantic Bight.  Massmann et al. (1962) reported menhaden larvae at distances > 40 

miles offshore of the mouth of Chesapeake Bay.  Based on increases in length of larvae 

in a shoreward direction, Massmann et al. suggested that larval movement is shoreward.  

Modeling results from SABRE, however, suggested that cross-shelf transport 

mechanisms are a secondary component of the transport process and that north to south 

along-shore transport predominates.    

Understanding mechanisms that drive offshore larval transport has proven to be a 

difficult task.  Water currents, winds and larval behavior are important components in 

modeling larval transport (Hare et al. 1999).  Hoss et al. (1989) suggested that vertical 

movements in the water column may promote shoreward, cross-shelf transport of larvae 

and merit consideration for inclusion in transport models.   

Ingress of menhaden larvae to estuaries has been monitored by programs in North 

Carolina and the Mid-Atlantic states, usually at fixed stations near the entrance to 

estuaries (Forward et al. 1999; Hare et al. 2005; Hettler and Hare 1998; Warlen 1992, 

1994; Warlen et al. 2002).  After menhaden larvae reach the entrance of an estuary 

factors that promote their ingress, while important, are poorly understood.  Circulation, 

hydrography, winds, and tides all may play a role in determining if ingress will be 

successful.  Olney and Boehlert (1988) suggested that ingressing fish larvae, including 

menhaden, in the Chesapeake Bay may utilize the non-tidal up-bay salt wedge intrusion 

for recruitment into the estuary based on an ichthyoplankton survey near the Bay mouth.  
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In a two-day study at the Chesapeake Bay mouth, Hare et al. (2005) reported that wind-

driven, up-estuary flux and residual bottom tidal inflow, combined with vertical 

positioning behavior, appeared to be responsible for up-estuary movement of larval 

menhaden.  Reiss and McConaugha (1999) considered event-scale upwelling and 

downwelling forces as cross-frontal mechanisms for transport of larval fishes into or 

away from the entrance of Chesapeake Bay.  They explain that upwelling-favorable 

southwesterly winds divert the Chesapeake Bay plume front offshore possibly resulting 

in the advection of some larval fishes offshore.  Subsequent rapid weakening of those 

winds allows the Chesapeake Bay plume flow to revert against the coast trapping low 

salinity water offshore and, in effect, retaining larvae offshore.   

 There is a need for information on variability in the inter- and intra-annual ingress 

patterns of Atlantic menhaden to the Chesapeake Bay to better understand how offshore 

supply influences recruitment patterns.  The objective of this chapter is to describe inter-

annual and monthly abundances and variability in patterns of ingress by menhaden larvae 

at the Chesapeake Bay mouth, with particular interest in identifying peak periods of 

ingress.  Based on ichthyoplankton surveys, ingress of menhaden larvae at the Bay mouth 

and its annual and monthly variability are described and analyzed in relation to tide 

stages, time of day, depth distributions and location across the Bay mouth.   

 I hypothesized that ingress of Atlantic menhaden larvae and peak levels of ingress 

into the Chesapeake Bay would vary monthly and inter-annually.  Variability may be 

attributable to shifts in spawning times and areas, both inter-annually and during a 

spawning season.  Explaining the mechanisms that generate along-shore and cross-shelf 
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transport was beyond the scope of this study.  Patterns of ingress are described based on a 

three-year sampling program conducted at the Chesapeake Bay mouth..     

 

Methods   

  

Study Area, Surveys, and Sample Collections:  

 The study area is located at the mouth of the Chesapeake Bay where ingress of 

ocean-spawned Atlantic menhaden larvae occurs.  The Bay mouth is 20-km wide and has 

three shipping channels of different depths (Figure 2.1).  The Chesapeake Channel is the 

deepest with depths of 17.7 m.  The shallower North Channel is 14-m deep.  Between 

these channels is a shallow flat, the Middle Grounds, with depths of 11.3 to 14.1m 

(Valle-Levinson et al. 2001).  At the southern end of the Bay mouth is the Thimble Shoal 

Channel with depths of 8.0 to 11.8 m.  Depths between Thimble Shoal Channel and 

Lynnhaven Inlet average 10 m (Valle-Levinson and Lwiza 1998).   

 A sampling transect was designated across the Chesapeake Bay mouth, located 

approximately 1-mile seaward of the Chesapeake Bay Bridge/Tunnel.  Four stations were 

sampled on the transect in December 2005.  Five fixed stations (Figure 2.1) were 

designated and sampled on all remaining survey cruises during the three-year program.   

 Eighteen cruises were conducted in the December 2005 to April 2008 period 

(Table 2.1).  Cruises were conducted from November to April, the season when ingress 

was expected to occur.  All except two of the cruises were on the University of Maryland 

Center for Environmental Science’s 20.0-m R/V Aquarius. The remaining two cruises 

were on the University of Delaware’s 44.5-m RV Hugh Sharp.   
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 Ichthyoplankton and zooplankton samples were collected at each station on the 

RV Aquarius cruises with a 1-m2 mouth-opening Tucker Trawl with 280-μm mesh nets.  

A Tucker trawl with 1-mm mesh nets was used in the two cruises conducted in early 

November 2007 and February 2008 on the R/V Hugh Sharp.  Flowmeters were secured 

in the mouths of each Tucker-trawl net to allow calculation of volume filtered.  The 280-

μm mesh was suitable for collection of small fish larvae and mesozooplankton in the size 

range eaten by larval menhaden.  The Tucker trawl with 1-mm meshes was sufficient to 

capture ingressing menhaden larvae, which are mostly > 20-mm length, but did not 

sample small ichthyoplankton of other taxa or mesozooplankton.  Each Tucker Trawl had 

two nets.  In a deployment, one net was fished obliquely from near-bottom to the 

pycnocline and the second was fished from the pycnocline to surface. On occasions when 

a pycnocline was not well defined the bottom net was towed from near bottom to mid-

depth.  On most deployments, tow durations for each net were four minutes (mean 

volume filtered = 216.31m3 ± 60.39 se).  On several cruises during 2006-07, tows were 

extended to six minutes to increase numbers of larval menhaden in catches (mean volume 

filtered = 463.96 m3 ± 14.32 se).  During each cruise, all stations on the transect were 

sampled at least twice and up to four times a day to encompass two photic periods (night 

and day) and a range of tide stages.  Samples were preserved in 100% ethanol.    

 In addition to the sample collections, depth profiles of hydrographic conditions 

were measured at each station using a SeaBird CTD (conductivity, temperature, and 

depth).  On occasions when the CTD was not available or malfunctioned (Days 2 and 3 in 

March 2007, all 21 stations in April 2007, and one station in November 2007) a YSI 

sonde was used to record those measurements at 1-m depth intervals.  Tide stages and 
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predicted currents were obtained from tide charts using the “Capn Voyager” software 

Tides 32 (Star Technologies).  The tide stage at the time of each sample collection was 

recorded.  

 

Laboratory Procedures  

Ichthyoplankton samples were processed in the laboratory.  Menhaden larvae 

were identified, enumerated, and subsequently measured.  The protocol for measuring 

menhaden larvae was to measure all larvae in samples containing fewer than 100 larvae 

and to measure a random subsample of 100 in samples with more than 100 larvae.  

Lengths of unmeasured larvae in samples with more than 100 menhaden larvae were 

estimated from the length-frequency distributions of measured larvae and proportional 

assignment of lengths to unmeasured larvae.  The proportion of larvae in each 1-mm 

length bin was determined for each sample.  Mean lengths from only the measured larvae 

(1,172 in 2005-06, 939 in 2006-07, and 3,342 in 2007-08) were compared among 

monthly cruises and among the three years in a nested ANOVA followed by the Tukey 

HSD multiple comparisons test to determine significance of individual means.    

 

Larval Concentrations  

 Catches of menhaden larvae were expressed as concentrations (number per 100 

m3 of water filtered).  This metric is an index of larval ingress into Chesapeake Bay and 

was used for all comparisons and analyses.  Larval ingress into estuaries may occur in 

pulses (Warlen 1994).  The standard deviations for the daily mean larval concentrations 

at the Bay mouth were compared to the respective means using simple linear regression 
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to ascertain if temporal patchiness increases with mean concentration of menhaden 

larvae.    

 The temporal (inter-annual and monthly), spatial (among stations, above vs below 

pycnocline), tide stage, and day vs. night variability in larval menhaden concentrations 

were analyzed using Analysis of Variance (ANOVA).  The model chosen for the analysis 

was a nested ANOVA.  It was selected because it allowed subgrouping the factors within 

different levels of other factors.  The response variable in the model, larval concentration, 

was loge-transformed to achieve a more consistent and more homogeneous scale of 

variability.  To include logarithmic values for larval concentrations of zero, a constant 

equal to half the lowest positive larval concentration value was added to all larval 

concentration data, including the zero values.  This adjustment and approach have been 

debated but are used quite commonly in practice (Venables and Dichmont 2004).  

Geometric mean concentrations of larvae are reported based on the back-transformed loge 

values.  Significant differences in mean larval concentrations among the levels of each 

factor were identified using the Tukey Honestly Significant Difference (HSD) method of 

multiple comparisons.   

 

Inter-Annual Variability in Larval Concentrations 

 Larvae were sampled over a three-year period during three consecutive ingress 

seasons (2005-06, 2006-07, 2007-08).  The inter-annual differences in larval 

concentrations at the Bay mouth were analyzed using the nested ANOVA (α = 0.05).   
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Among-Cruises Variability in Larval Concentrations   

 Differences among cruises in larval concentrations at the Bay mouth were 

included in the nested model to identify seasonal patterns.  Because cruises were mostly 

conducted at monthly intervals, among-cruise differences in larval concentrations largely 

represent monthly (i.e., seasonal) differences.  In the model, the among-cruise variability 

was nested within each level of year.  This allowed testing for differences in larval 

concentrations among the five cruises (December-April) in 2005-06, six cruises 

(November through April) in 2006-07, and seven cruises (Early November, Late 

November-April) in 2007-08.   

 

Among-Stations Variability in Larval Concentrations 

Distributions of menhaden larvae across the mouth of Chesapeake Bay were 

evaluated by testing for differences in mean larval concentrations among the five stations 

sampled during the study.  Note that in December 2005 only four stations were sampled.  

In the analysis, mean concentrations at each station were aggregated; these means do not 

include data from December 2005.  The nested ANOVA was used for the analysis.  

Among-station differences in larval concentrations were nested within year and also 

nested within cruises (i.e., months) within year.     

   

Tide-stage Variability in Larval Concentrations 

 Sampling for larval menhaden was conducted under different tide stages to 

determine if abundance or availability of larvae differed among stages.  In most cruises, 

entire tidal cycles were included.  Predicted tide stages were recorded from the software 
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“Capn Voyager”.  Four tide stages were designated based on the software: slack before 

ebb, ebb, slack before flood, and flood. The differences in mean larval concentrations 

among tide stages were tested in the nested ANOVA.     

 

Between-Depths Variability in Larval Concentrations 

 Differences in mean larval concentrations between two depth zones in the water 

column (above and below pycnocline) were tested in the nested ANOVA.  Larval 

concentrations in the two depth zones were nested within years and within cruises (i.e., 

months) within years.     

 

Day-Night Variability in Larval Concentrations 

 Concentrations of menhaden larvae collected during the day and night were 

compared.  The variability attributable to day and night differences in larval 

concentrations was analyzed in the nested ANOVA.  Differences in larval concentrations 

between day and night were nested within years and also nested within cruises (i.e., 

months) nested within years.     

 

The Nested Analysis of Variance and F-Tests   

 The model used to analyze differences in larval concentrations is: 

 

C = y +  m(y) + t(y) + v(y) + s(y) + p(y) + t(m(y)) + v(m(y)) + s(m(y)) + p(m(y)) 

 

Where C is larval menhaden concentration, y is year, t is tide stage, v is top vs. bottom, s 

is sampling station at the Bay mouth, p is day vs. night, and m is cruise.   
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Type III F-tests (Sokal and Rohlf 1969) were conducted to determine if the source of 

within-year variability in larval concentrations is greater than the source of variability in 

larval concentrations from the two-level nested term, months within year.  This F-value 

and test were calculated by dividing the mean square from variability in larval 

concentrations due to year by the type III mean square of months within year.  This 

approach tested the null hypothesis that among-year variability in larval concentrations is 

greater than the variability in larval concentrations attributable to months-within-year.  In 

a similar way, F-tests were conducted to determine if the sources of variability from the 

two-level nested terms (tide within year, top vs. bottom within year, day vs. night within 

year, and stations within year) are greater than variability from the three-level nested 

terms (tide within month within year, etc.).   

 

F = MSyear / MSmonths-within-year 

 

Larval Lengths   

Differences in total length between top and bottom samples, day vs. night, among 

stations, and among tides were tested using ANOVA.  In cases when differences were 

significant Tukey HSD was used to identify means that differed significantly.   

 

Larval Ingress vs. Juvenile Index   

 Age-0 juvenile relative abundances of Atlantic menhaden are estimated annually 

in Chesapeake Bay by Maryland DNR from seine sampling in Maryland waters of 

Chesapeake Bay (http://dnr.maryland.gov/fisheries/juvindex/index.asp).  The juvenile 
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abundance values for 2006-2008 were compared to mean annual ingress levels. The 

proportion of positive Tucker-trawl tows (the proportion of tows with at least 1 

menhaden larva) was used as another metric to relate larval ingress to subsequent 

juvenile recruitments (Mangel and Smith 1990; Uphoff 1993).   

 

Results   

 

Hydrography at the Chesapeake Bay Mouth   

 Mean water-column temperatures ranged from 4.53 oC to 14.29 oC across cruises 

at the Bay mouth during the three-year study (Table 2.2).  Mean water temperatures 

differed significantly (p < 0.001) among years.  Multiple comparisons of mean 

temperatures among the three years were significantly different for all combinations.  The 

mean water temperature was lowest in 2005-06 (x̄ = 8.25 oC ± 0.16 se), intermediate in 

2006-07 (x̄ = 9.65 oC ± 0.19 se), and highest in 2007-08 (x̄ = 10.31 oC ± 0.15 se) (Table 

2.2).  In each of the years, the within-year monthly (i.e., among cruises) differences in 

water temperatures also were significant (p < 0.001).  Only in January and February 2008 

were temperatures not significantly different.  Mean temperatures were similar above and 

below pycnocline (Table 2.3).   

Mean water-column salinities among cruises at the Bay mouth ranged from 22.98 

to 29.47 units (Table 2.2).  Mean salinity differed significantly among the three years (p < 

0.001) and among months within each year (p < 0.001).  The mean salinity was lowest in 

2005-06 (x̄ = 25.60 ± 0.25 se), intermediate in 2006-07 (x̄ = 26.35 ± 0.16 se), and highest 

in 2007-08 (x̄ = 27.68 ± 0.12 se).  Mean salinity in 2005-06 was significantly lower than 
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in 2006-07 (p = 0.006) and 2007-08 (p < 0.001); and, mean salinity in 2006-07 differed 

significantly from 2005-06 and 2007-08 (p < 0.001).  Mean salinities below the 

pycnocline were generally about 2 units higher than above the pycnocline (Table 2.3).   

 

Catches of Larvae 

 A total of 9,840 larvae was collected at the Chesapeake Bay mouth.  The highest 

catches occurred at different temperatures during the three years.  In 2005-06 the highest 

catches occurred at temperatures between 5 and 10 oC (Figure 2.2a).  In 2006-07, highest 

catches occurred at temperatures < 6 oC (Figure 2.2b) while in 2007-08 highest catches 

were made at > 9 oC (Figure 2.2c).   

 

Larval Length   

 The aggregated length-frequency distributions of larval Atlantic menhaden were 

very similar in the three years (Figure 2.3).  But, the mean total length (TL) of larval 

menhaden differed significantly among years (p < 0.001).  Mean TL in 2005-06 (x̄ = 

26.88 mm ± 0.12 se) was significantly smaller than the mean TL in 2006-07 and 2007-08.  

The mean TL in 2006-07 (x̄ = 27.94 mm ± 0.10 se) and 2007-08 (x̄ = 28.13 mm ± 0.05 

se) did not differ (p = 0.178) (Table 2.4).    

The within-year differences of mean lengths of larval menhaden among cruises 

were significant (p < 0.001) (Table 2.5).  Mean lengths were significantly smaller during 

the first cruise in each year: December 2005 (x̄ = 22.66mm ± 0.54 se), November 2006 

(x̄ =22.90 mm ± 0.35 se), and early-November 2007 (x̄ = 24.07 mm ± 0.19 se), than in all 

other months.  Beyond this observation, there were no seasonal patterns in any of the 
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years.  The largest mean length in 2005-06 occurred in April (x̄ = 28.07 mm ± 0.41 se) 

but was only significantly longer than the mean length for the December cruise.  In 2006-

07, the mean length was longest in January (x̄ = 33.60 mm ± 1.19 se), which was 

significantly longer than the mean length for all cruises except December (x̄ = 30.97 mm 

± 0.44 se).  The longest mean length in 2007-08 occurred in January (x̄ = 29.36 mm ± 

0.26 se), which was significantly longer than the mean length in early November (x̄ = 

24.07 mm ± 0.19 se), late-November (x̄ = 28.17 mm ± 0.13 se), and December (x̄ = 28.58 

mm ± 0.05 se) of that sampling year.    

The length distributions of ingressing larval menhaden were similar among 

cruises (Figure 2.4).  Most larvae were in the 15 to 35-mm TL range.  There was clear 

bimodality in the length-frequency distribution of larvae collected during December 

2005, but length distributions from all other cruises appear to be unimodal.    

Mean lengths did not differ between the top (x̄ = 26.93 mm ± 23 se) and bottom 

(x̄ = 27.22 mm ± 0.26 se) tows (p = 0.402).  Mean lengths of larvae were significantly 

longer at night (x̄ = 27.48 mm ± 0.19 se) than during day (x̄ = 26.50 mm ± 0.32 se) (p = 

0.006).  Mean length of larvae was significantly longer at the Lynnhaven station (south 

side of Bay mouth) than at the four other stations (p = 0.002) (Table 2.6).  There were no 

differences in mean lengths among the four tide stages (p = 0.176) (Table 2.7).   

 

Ingress Concentrations       

 The geometric mean of larval Atlantic menhaden concentrations differed 

approximately 4-fold among the three years of the study (Table 2.8).  The differences 

were significant (p < 0.001).  For comparison, the arithmetic means (not analyzed 
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statistically) in larval concentrations differed 9-fold.  Concentrations of Atlantic 

menhaden larvae at the Chesapeake Bay mouth were highest in 2007-08 (x̄ = 8.44 

larvae/100m3 ± 2.08) (geometric mean = 0.49 larvae/100m3 ± 0.13 se) and lowest in 

2006-07 (x̄ = 0.90 larvae/100m3 ± 0.17) (geometric mean = 0.11 larvae/100m3 ± 0.08 se) 

(Figure 2.5).  The mean concentration in 2005-06 (x̄ = 2.32 larvae/100m3 ± 0.42) 

(geometric mean = 0.31 larvae/100m3 ± 0.16 se) was significantly higher than the mean 

concentration in 2006-07 (p < 0.001) and marginally lower than the mean concentration 

in 2007-08 (p = 0.011).  The mean larval concentration in 2007-08 was higher than the 

mean concentration in 2006-07 (p < 0.001).  Inter-annual variability in mean larval 

menhaden concentrations, although highly significant, was not greater than the within-

year monthly variability (From Table 2.9; p = 0.153).   

In 2005-06, larval menhaden concentrations at the Chesapeake Bay mouth were 

highest in January (x̄ = 4.40 larvae/100m3 ± 1.20) (geometric mean = 1.14 larvae/100m3 

± 0.30 se) and February 2006 (x̄ = 4.62 larvae/100m3 ± 1.01) (geometric mean = 1.63 

larvae/100m3 ± 0.29 se) (Figure 2.6a; Table 2.10).  In 2006-07, larval menhaden 

concentrations at the Bay mouth were consistently low (< 0.15 larvae/100 m3) during all 

cruises except February 2007 (x̄ = 3.72 larvae/100m3 ± 0.72) (geometric mean = 1.04 

larvae/100m3 ± 0.21 se) when concentrations were significantly higher than in other 

months (Figure 2.6b).  In contrast, in 2007-08 larval concentrations were consistently 

high, peaking in December 2007 (x̄ = 23.07 larvae/100m3 ± 7.33) (geometric mean = 1.36 

larvae/100m3 ± 0.32 se), and in March 2008 (x̄ = 5.07 larvae/100m3 ± 2.45) (geometric 

mean = 1.16 larvae/100m3 ± 0.38 se) (Figure 2.6c).  Larval concentrations peaked in 
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different cruise months among years.  Peak ingress occurred in February of 2005-06 and 

2006-07, but in December 2007-08 (Figure 2.6).  

 Catches of larvae were variable and variability increased with the mean 

concentration, indicating patchy occurrences of larvae at the Bay mouth (Figure 2.7). The 

standard deviation of the mean larval concentration for tows during each cruise was 

directly related to the mean (p < 0.001).  Numbers of larvae per sample ranged from 0 to 

92 in 2005-06, 0 to 99 in 2006-07, and 0 to 1481 in 2007-08 (Table 2.1).    

 

Larval Distributions  

Stations   

 The among-station variability in concentrations of Atlantic menhaden at the Bay 

mouth was remarkably and unexpectedly small (Figure 2.8).  Within-year differences 

among the five stations were not significant (Table 2.7; p = 0.093).  Within-month 

differences in mean larval concentrations among stations within years also were not 

significant (Table 2.7; p = 0.161). 

 

Vertical Distributions   

 Mean larval menhaden concentrations above and below the pycnocline differed 

significantly within years (Table 2.8; p = 0.002).  In 2005-06 the mean concentration was 

significantly higher (p = 0.003) above the pycnocline (x̄ = 3.63 larvae/100m3 ± 0.79) 

(geometric mean = 0.48 larvae/100m3 ± 0.23 se) compared to mean concentration below 

the pycnocline (x̄ = 1.09 larvae/100m3 ± 0.26) (geometric mean = 0.17 larvae/100m3 ± 

0.19 se) (Figure 2.9; Table 2.9).  However, in 2006-07 and 2007-08, the mean 



 34

concentrations did not differ significantly above and below pycnocline.  For among-

month comparisons, no significant differences in mean larval concentrations were 

detected above and below the pycnocline in any of the years (From Table 2.8; p = 0.058).    

 

Tide Stage   

Sampling had not been designed to take place on designated tide stages.  The 

most frequently sampled tide stages were ebbing tide (n = 347 tows) and flooding tide (n 

= 361 tows) for the three years combined.  Within-year patterns of larval menhaden 

concentrations among tide stages were not consistent but differences were highly 

significant (Table 2.8; p < 0.001).  Multiple comparisons showed that mean larval 

concentrations did not differ significantly among tide stages in either 2005-06 or 2006-07 

(Table 2.12).  In 2007-08, larval concentrations were highest in the slack before ebb tide 

(x̄ = 6.71 larvae/100m3 ± 2.41) (geometric mean = 0.95 larvae/100m3 ± 0.23 se) and flood 

tide (x̄ = 15.03 larvae/100m3 ± 3.68) (geometric mean = 2.30 larvae/100m3 ± 0.56 se) 

(Figure 2.10).  Within-month (= cruise) differences of mean larval concentrations among 

tide stages were significant (Table 2.8; p = 0.011).  The within-year variability in larval 

concentrations among tide stages was significantly higher than the within month 

variability (Table 2.8; p < 0.001).  

 

Day vs Night 

 Within-year differences in mean larval concentrations between day and night 

were significant (Table 2.8 p < 0.001).  However, those differences were not consistent.  

Larval concentrations were higher during the day in 2005-06 (Figure 2.11; Table 2.13) 
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but significantly higher at night in the next two years (Table 2.11).  Note that relatively 

few samples were taken at night in 2005-06 compared to the other years.  In 2007-08, the 

difference in mean larval concentrations between night and day was 14.02 larvae/100m3 

(geometric mean difference = 0.84 larvae/100m3).  In December 2007, the mean 

concentration at night was higher by 35.83 larvae/100 m3 (geometric mean difference = 

9.22 larvae/100 m3) than the daytime mean concentration.  The within-month differences 

in larval concentrations between day and night were significant (Table 2.8; p < 0.01) but 

not consistent (Table 2.13).  Within-year variability in larval concentrations between day 

and night was significantly higher than within-month variability (Table 2.9; p = 0.014).   

 

Larval Ingress and Juvenile Index   

 Neither the levels (larval menhaden concentrations) of annual ingress nor the 

proportion of positive Tucker-trawl tows (tows that included one or more menhaden 

larvae) in the three years were concordant with annual young-of-the-year index levels in 

September of the three years (Figure 2.12).   

 

Discussion 

 

 Success of Atlantic menhaden during the late-larval and juvenile stages 

potentially controls overall population growth rate (Quinlan and Crowder 1999).  The 

concentrations and abundance of menhaden larvae at the mouths of estuaries is a measure 

of survival and success of the transport process from spawning ground to nursery.  

Spawning in the Mid-Atlantic Bight during fall-early winter months (Higham and 
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Nicholson 1964; Kendall and Reintjes 1975; Judy and Lewis 1983; Berrien and Sibunka 

1999) and subsequent spawning in the South Atlantic Bight in late winter are potential 

major sources of ingressing larvae to the Atlantic coast (Reintjes 1961; Higham and 

Nicholson 1964; Kendall and Reintjes 1975).  The complex life cycle of menhaden, 

combined with probable variable spawning areas and times, and variability in transport 

pathways, gives rise to many possible sources of variability in supply of larvae to 

estuaries.  Direct relationships between larval supply, measured as abundance at ingress 

to estuaries, and estuarine juvenile abundance of spot (Leiostomus xanthurus), pinfish 

(Lagodon rhomboides), and southern flounder in North Carolina have been reported 

(Taylor et al. 2009).  Long-term studies of ingress of menhaden and other fishes into the 

Chesapeake Bay are crucial to understanding inter-annual changes and patterns of 

offshore supply of larvae to the Bay.  They also are important to evaluate causes of 

recruitment variability to the menhaden stock, which has declined dramatically since the 

1980s (MDSG 2009).  Long-term studies are especially needed to evaluate the 

relationship between larval ingress and subsequent young-of-the-year (YOY) 

recruitment.  There was no evidence of concordance between larval ingress and YOY 

recruitment in my three-year study although it would be difficult to confirm such a 

relationship with so few years of data.   

 There was substantial inter-annual and seasonal variability in the supply of 

menhaden larvae to the Chesapeake Bay mouth in the three-year program.  Based on the 

monthly age distributions of ingressing larvae (Chapter 3), the supply of larval menhaden 

to the Bay mouth was continuous from November through April in all years of the study.  
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Although my collections did not span other months, the observed patterns of abundance 

indicate that relatively few larvae ingress before October or after April.   

 Mean larval menhaden ingress at the Chesapeake Bay mouth experienced 9-fold 

inter-annual variability based on the arithmetic mean concentrations or 4-fold variability 

based on the geometric means.  It is obvious that the year-to-year variability can be 

considerable.  Similar levels of variability in ingress were observed for larvae of 

American eel Anguilla rostrata, summer flounder, and spot into coastal bays on the 

Eastern Shore of Maryland (Love et al. 2009).  Additionally, I observed strong variability 

in monthly ingress patterns and the months of peak ingress differed among years.  In the 

nested ANOVA, the month-within-year term accounted for more of the variability of 

larval abundance at the Chesapeake Bay mouth.  The year of highest ingress, 2007-08, 

was characterized by high concentrations of menhaden larvae in November and 

December (Figure 2.6).  Conversely, the year of lowest ingress, 2006-07, experienced 

low larval ingress in November and December.  The magnitude of ingress in 2005-06 

was intermediate with peaks in the December through February period.  This pattern 

indicates that a large fraction of the year-to-year differences in ingress is attributable to 

numbers ingressing early in the season.  Larvae ingressing from November through 

January were hatched prior to December (Chapter 3) when the spawning population 

reportedly is located offshore of the mid-Atlantic coast (Higham and Nicholson 1964; 

Judy and Lewis 1983).    

 Month-to-month differences in ingress may be a result of differences in spawning 

intensity or seasonal changes in transport trajectories.   Modeling results have suggested 

that spawning from fall to early winter in the mid-Atlantic region accounts for most 
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ingress of Atlantic menhaden to Chesapeake Bay (Quinlan et al. 1999).  In Chapter 3 of 

this thesis, I reported that > 90% of larval menhaden collected at the mouth of 

Chesapeake Bay had been hatched by December 15 in each of the three years.  Ingress in 

2006-07 was low but continuous from November through April except for a notable peak 

in larval concentrations during February 2007.  In the other years, higher ingress levels 

were observed early in the season and could have resulted from increased abundance of 

larvae or more favorable transport toward Chesapeake Bay from late fall and early winter 

spawning activity in the mid-Atlantic.   

It was expected that higher numbers of larvae would be encountered at the 

northern side of the Chesapeake Bay mouth because the net flow in that area is into the 

estuary (Valle-Levinson and Lwiza 1997; Valle-Levinson 2001).  However, there was no 

evidence of significant differences in concentrations of ingressing menhaden larvae 

across the Chesapeake Bay mouth.  Across-channel variability in larval menhaden 

concentrations in a small tidal inlet at Beaufort, North Carolina was reported (Churchill et 

al. 1999).  The authors noted spatial differences in net water flow through Beaufort Inlet, 

with the eastern side dominated by net inflow and the western side net outflow.  Ingress 

of menhaden larvae was predominantly on the eastern side of Beaufort Inlet.  Although 

inflow to Chesapeake Bay is stronger at the north side of the Bay mouth (Valle-Levinson 

and Lwiza 1997; Valle-Levinson 2001), menhaden larvae were not concentrated there.  In 

research on Atlantic croaker larvae near the mouth of Chesapeake Bay, Schaffler et al. 

(2009) reported a similar result and did not find any differences in larval abundance 

across the Bay mouth. Those authors also had expected to find a higher abundance of 

larvae near the northern side of the Bay mouth.  Mechanisms other than bulk inflow may 
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be important in transporting larvae across the Bay mouth and into the estuary.  For 

example, during southwesterly winds net inflow occurs at near-bottom depths across the 

mouth of Chesapeake Bay (Valle-Levinson et al. 2001).  Also, wind-induced flux may be 

an important mechanism for ingress of larvae into Chesapeake Bay (Joyeux 2001; Valle-

Levinson et al. 2001; Hare et al. 2005).   

Despite lack of pattern in the larval distribution across the Bay mouth, mean 

lengths of menhaden larvae collected at the Lynnhaven station (southernmost station) 

were significantly longer than mean lengths at all other stations.  The net flow of water at 

this station is seaward (Valle-Levinson and Lwiza 1997; Valle-Levinson 2001).  The 

reason for the observed spatial distribution of sizes is not clear.  Once larvae have entered 

Chesapeake Bay it is possible that they are re-circulated near the mouth of the Bay, 

possibly more commonly at the south side, due to flow conditions reported near the 

mouth (Valle-Levinson and Lwiza 1997; Valle-Levinson 2001).   

There were no clear patterns in the vertical positioning of menhaden larvae in the 

water column during this study, nor were larvae more abundant (or available to the 

Tucker trawl) during flooding tides as had been reported in some studies (Hare et al. 

2005). Movement and ingress of larvae of marine organisms often is controlled by 

vertical migrations cued to tides (Forward and Tankersley 2001).  These behaviors have 

been reported for movement and ingress of larval fishes into estuaries, including 

weakfish, summer flounder, and spot (Weinstein et al. 1980; Boehlert and Mundy 1988; 

Rowe and Epifanio 1994; Reiss and McConaugha 1999).  In my surveys, larval 

menhaden were more abundant above the pycnocline in 2005-06 but there were no 

differences in concentrations of larvae above or below the pycnolcine in the other two 



 40

years.  In surveys on the continental shelf, Govoni and Pietrafesa (1994) and Joyeux 

(1998) also did not find defined patterns in vertical distributions of Atlantic menhaden, 

spot, and Atlantic croaker larvae.  In the offshore collections, the center of mass of 

Atlantic menhaden larvae distributions was at mid-depth to surface (Govoni and 

Pietrafesa 1994).  These authors argued that, based on physical processes, larvae at those 

depths could be advected shoreward.  Joyeux (2001) suggested a disconnect between 

larval retention in estuaries and tide patterns, contending that since Atlantic menhaden do 

not exhibit vertical migrations, tide reversal cannot be a mechanism for retention in an 

estuary.  Wind patterns, especially north components of wind, have been correlated with 

larval ingress (Hettler and Hare 1998; Hare et al. 2005).   

At the mouth of Chesapeake Bay, Hare et al. (2005) reported, based on a two-day 

intensive study, that wind forcing could contribute to up-Bay movement of larval Atlantic 

menhaden.  The lack of consistent vertical distributions and tide-stage patterns of larval 

menhaden occurrences and concentrations across the Chesapeake Bay mouth in my study 

suggests that larvae arriving at the Bay mouth migrate up-bay by processes other than 

selective vertical migrations cued to tides.  However, reaching conclusions requires 

further research on offshore and nearshore wind patterns and frequencies of winds with 

respect to menhaden larvae abundance.  Another potentially important consideration to 

explain up-bay movement of larval menhaden is larval size and ontogenetic stage.  The 

mean lengths of menhaden larvae ingressing into Chesapeake Bay were > 25 mm TL.  

These late-stage larvae are better equipped for horizontal, directed swimming than 

smaller larvae (Shanks 1995).  Swimming speeds of 15-mm menhaden larvae were 
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reported to be 1 to 2 body lengths per second (De Vries et al. 1995).  It is conceivable 

that up-bay movement is in large part a result of horizontal up-bay swimming.   

A shift in spawning areas or times may contribute to seasonal variability in 

abundance of ingressing menhaden larvae observed at the mouth of Chesapeake Bay.  

Seasonal ingress to the Bay mouth varied among years, peaking earliest in 2007-08, the 

year of highest ingress.  Based on evidence from past research, variability in timing and 

geographic distribution of the spawning migration by Atlantic menhaden adults, along 

with transport variability, are realistic circumstances that could generate different ingress 

patterns.  Information on inter-annual variability in spawning migration patterns is 

limited but the Marine Resource Monitoring Assessment and Prediction (MARMAP) 

program provided a ten-year comparison of Atlantic menhaden egg distributions along 

the Atlantic coast (Berrien and Sibunka 1999).  From those surveys, Berrien and Sibunka 

(1999) showed that patterns of egg distributions from 1977-87 varied considerably inter-

annually.  Such year-to-year variability in spawning patterns and thus areas where eggs 

and larvae originate may be a cause of inter-annual variability in dispersal and monthly 

patterns of larval abundance at the Chesapeake Bay mouth.   

Hydrographic and wind conditions along with spawning location and timing are 

likely to be important factors controlling the transport of larval menhaden from offshore 

to the vicinity of Chesapeake Bay.  Based on simulated trajectories of larvae, Quinlan et 

al. (1999) hypothesized that larval ingress to mid-Atlantic estuaries is supplied by 

spawning events on the mid-Atlantic shelf during fall months. They also hypothesized 

that spawning south of Cape Hatteras during the winter may not be a significant source of 

menhaden larvae to mid-Atlantic estuaries.  During fall when spawning occurs in the 
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mid-Atlantic region winds directed to the south and southwest directions may cause 

larvae to drift in a southward, along-shore direction (Werner et al. 1999).  This process 

was hypothesized to deliver larvae to both mid-Atlantic and south Atlantic estuaries 

(Hare et al. 1999; Werner et al. 1999).  In the December through March period winds 

shift and are usually directed to the southeast or east in the mid-Atlantic and thus the 

model predicts that South Atlantic sources of menhaden larvae are no longer possible.  

However, by late winter, spawning is concentrated in the South Atlantic Bight and it must 

be considered as a potential source of larvae.   

There is observational evidence of mid-Atlantic ingress originating from southern 

sources.  In my research, larval ingress during March and April probably originated from 

southern sources where major spawning occurs in the winter months.  Spawning during 

late winter is mostly absent in the mid-Atlantic (Higham and Nicholson 1964; Berrien 

and Sibunka 1999) because temperatures are < 13oC, a threshold below which menhaden 

are not believed to spawn.  Larvae collected in March and April had hatch dates in the 

winter (Chapter 3) and therefore must have originated from the South Atlantic Bight 

where temperatures were favorable for spawning.  One possible mechanism for ingress 

from spawning in the South Atlantic Bight is entrainment and northward transport by the 

Gulf Stream.  Two studies that included observations on age of menhaden have suggested 

that larvae ingressing into mid-Atlantic estuaries (New Jersey and Delaware) during the 

early spring originated from spawning sources south of Cape Hatteras (Warlen et al. 

2002; Light and Able 2003).  Warlen et al. (2002) based their conclusion on evidence 

that hatch-date distributions overlapped for larvae ingressing into New Jersey estuaries 

and North Carolina estuaries.  The period of overlap for these hatch dates occurred during 
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the winter when spawning activity is concentrated south of Cape Hatteras.  Light and 

Able (2003) agreed with this explanation and contended that spawning in the mid-

Atlantic was not likely during late winter because temperatures were too cold.  Warlen et 

al. (2002) and Light and Able (2003) suggested that northward transport of larvae to mid-

Atlantic estuaries was via transport in the Gulf Stream.  The mechanisms for this mode of 

transport have not been fully explored but Hare and Cowen (1991, 1993) have suggested 

possible scenarios on how fish larvae may become entrained into the Gulf Stream, 

transported to the north, and subsequently advected shoreward.  They suggested that 

warm core rings may be a mechanism to transport bluefish Pomatomus saltatrix larvae 

shoreward from the Gulf Stream.  Although the mechanisms that deliver menhaden 

larvae to the Mid-Atlantic from the South Atlantic Bight have not been fully explained, 

an alternative mechanism, briefly mentioned in Quinlan et al. (1999), suggests that a 

northward-flowing, nearshore current could potentially deliver southern-spawned larvae 

into mid-Atlantic estuaries based on modeled wind fields.   

My results cannot be interpreted to provide support for or against northward 

transport of larval menhaden from the South Atlantic Bight to the Chesapeake Bay.  The 

mean age at ingress, an indicator of the transport period, for larval menhaden entering the 

Chesapeake Bay during the three-year study was less than two months post-hatch during 

each year of the study (Chapter 3).  The mean age at ingress of menhaden larvae in 

March and April was not older than the mean age at ingress for other months.  Since late 

winter spawning is known to be mostly concentrated in the South Atlantic Bight, it is 

very likely that larvae ingressing into Chesapeake Bay during March and April originated 

from the South Atlantic Bight.  If larvae ingressing into the Chesapeake Bay during 
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March and April were transported via the Gulf Stream and then subsequently advected 

across the shelf to the Bay, transport period for those larvae would seemingly have been 

longer and thus larvae collected at ingress would have been older.  Although Atlantic 

menhaden in the South Atlantic Bight have been reported to spawn in close proximity to 

the Gulf Stream (Checkley et al. 1988, Checkley et al. 1999), the process of advection 

back onto the continental shelf could be complex.  Govoni and Pietrafesa (1994) 

suggested that some menhaden larvae originating from spawning near the Gulf Stream 

could become entrained in it.  Although Gulf Stream transport of larvae is a possible 

mechanism for larval transport to mid-Atlantic estuaries, further research is needed to 

evaluate this mechanism.  Transport of larvae via a nearshore northward current, as 

proposed by Quinlan et al. (1999), also requires further investigation.   

 In another modeling study, Rice et al. (1999) reported inter-annual differences in 

transport trajectories of menhaden larvae using a three-dimensional wind and tide-driven 

hydrodynamic model.  During strong southward winds, menhaden larvae were advected 

from the mid-Atlantic to estuaries in the South Atlantic Bight.  When those winds were 

weak, modeled advection to the South Atlantic Bight was not possible and modeled 

larvae originating in the Mid-Atlantic were not observed in South Atlantic estuaries.  If 

the model and interpretation by Rice et al (1999) are correct, the processes and variability 

in winds and tides they infer possibly could explain some of the variability in observed 

inter-annual and monthly differences in patterns of ingress to Chesapeake Bay.    

The occurrences and concentrations of ingressing menhaden larvae at the 

Chesapeake Bay mouth are patchy in space and time.  The frequency of zero catches of 

larval menhaden was high at the Bay mouth.  For all years combined, 54% of the samples 
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contained zero Atlantic menhaden larvae.  The number of samples with zero Atlantic 

menhaden larvae was lowest in 2007-08 (42%) and highest in 2006-07 (66%).  The 

standard deviation of daily mean larval concentrations increased with increasing mean 

larval concentration suggesting that larval catches at the Chesapeake Bay mouth are 

patchy and that ingress through the Bay mouth likely occurs in pulses.  Warlen’s (1994) 

study on ingress of Atlantic menhaden to a North Carolina estuary produced a similar 

result as did research on ingress of other fish (Hettler et al. 1997).  

Warlen (1992) and Boehlert and Mundy (1988) provide another hypothesis that 

might help explain pulsed ingress of larvae into estuaries.  Warlen (1992) reported that 

transport of menhaden larvae to North Carolina estuaries is biphasic and that larval 

pooling apparently occurs in the nearshore environment just prior to estuarine ingress.  

The mechanism for this process is likely a consequence of behavioral responses to the 

physical environment, especially to tides.  Net flow from an estuary is offshore; thus, a 

larva must respond behaviorally to the physical environment to move into an estuary 

(Boehlert and Mundy 1988).  Weinstein et al. (1980) found that flounder Paralichthys 

spp. larvae near a North Carolina inlet used selective tidal stream behavior and were 

mostly near surface at night during flood tides when movement of water is into an 

estuary.  Conversely, during ebb tides, the flounder larvae migrated to near bottom to 

avoid advection.  Menhaden larvae at the Bay mouth during my study were not more 

abundant during flood tides at night.  Schaffler et al. (2009), in research on Atlantic 

croaker larvae, did not find evidence for behavioral responses in ingress to Chesapeake 

Bay.  Larval pooling of Atlantic menhaden prior to ingress has not been fully explored 

but it might explain why transport rates of North Carolina menhaden from offshore to 
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nearshore progressively decline as the larvae approach the shore (Warlen 1992).  The 

mean age at ingress of Atlantic menhaden at the Chesapeake Bay mouth (Chapter 3) and 

ages of larvae reported in Warlen (1992) from North Carolina were similar, suggesting 

that similar transport times are occurring in both systems.  However, since transport 

distances are not the same, it is possible that larval pooling at the estuary mouth in one or 

both systems may play a role.   

Some bio-physical mechanisms that are important in the nearshore transport of 

menhaden larvae also may be important for up-estuary transport when the larvae reach 

the entrance of an estuary.  Once larvae have reached the mouth of Chesapeake Bay, up-

bay transport may be fairly rapid.  Ages at ingress suggest that new cohorts of larvae 

were sampled at the Bay mouth in each monthly cruise (Chapter 3).  Moreover, the 

extrapolated abundance of larvae at the Bay mouth experienced large day- to-day 

differences, further evidence that larvae may ingress rapidly and continue up-estuary 

movement.  Also, mean ages of menhaden larvae collected in the upper Chesapeake Bay, 

nearly 300 km from the mouth, were found to be approximately 30 days older than larvae 

collected at the Bay mouth (Houde et al. 2009) providing evidence that recruitment to the 

upper estuary can occur within 30 days after ingress.  In their two-day study, Hare et al. 

(2005) suggested that residual bottom inflow and wind-induced flux are important up-bay 

transport mechanisms for larval menhaden.  They found that menhaden larvae were more 

likely to be near the surface during flooding tides, resulting in potential up-bay 

movement.  During ebbing tides, Hare et al. reported that larvae had positioned 

themselves near bottom where they potentially could continue up-bay movement using 

residual bottom inflow.  In my more extensive research, larval distributions in the water 
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column or at tide stages did not show clear patterns suggesting that other factors such as 

horizontal swimming or wind-induced flux may be more important for up-bay movement.    

Overall, catches of menhaden larvae were higher at night than during the day but 

in 2005-06 larval catches were higher during the day.  It should be noted that very few 

samples were taken during the day during 2005-06 (i.e., small number of samples).  

There were strong differences in larval concentrations between day and night in the other 

two years when concentrations were much higher at night.  This finding may have 

important implications concerning ingress and up-bay recruitment of larvae into 

Chesapeake Bay.  Weinstein et al. (1980) suggested that larvae of other species (spot and 

flounder) migrate to the surface at night and use flood tides for ingress into estuaries.  A 

factor to consider in day-night comparisons is catchability.  Gear avoidance may be 

reduced under low light conditions.  The mean length of larvae entering Chesapeake Bay 

was significantly longer at night compared to the mean length of larvae captured during 

the day, suggesting that avoidance of the Tucker trawl by larger larvae might have been 

reduced under low light conditions.  Further research and analysis are required to 

specifically test for differences in larval concentrations between day and night in relation 

to tide stages and vertical positioning in the water column.   

During this study, ingress of Atlantic menhaden larvae was found to be quite 

variable.  Inter-annual ingress varied nine-fold.  Monthly ingress patterns varied inter-

annually.  The year of highest ingress 2007-08 experienced higher early-season ingress.  

Late-season ingress was low in all years except in March 2008.  In Chapter 3 larval 

menhaden ages, hatch dates, and growth rates were shown to vary inter-annually and 

monthly.  The mean age at ingress of larvae entering Chesapeake Bay was significantly 
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older in 2006-07 than in the other two years (Chapter 3).  The lowest ingress occurred in 

2006-07, suggesting that longer transport periods are associated with lower magnitudes of 

ingress.  Also, as previously noted, there was a lack of concordance between larval 

ingress and YOY recruitment indices despite the observed nine-fold variability in larval 

ingress.  Young-of-the-year menhaden recruitment has been low but quite stable in recent 

years (Figure 1.1).  Similar recruitment levels occurred in the 1960s.  Recruitment indices 

in the 1970s were much higher but they also were more variable.  It is unfortunate that 

there were no measures of ingress levels during the 1970s.  Ingress levels in that period 

may have been considerably higher than those I observed.   



 49

References 

 

Ahrenholz, D. W. 1991. Population biology and life history of North American 
menhadens, Brevoortia spp. Marine Fisheries Review 53: 3-19.   

Arnold, G. P. 1981. Movements of fishes in relation to water currents. pp. 55-79. In: D. J. 
Aidley, eds. Animal migration. Cambridge University Press. Cambridge, England. 

 
ASMFC. 2004. Addendum I to Amendment 1 to Interstate Fishery Management Plan for 

Atlantic Menhaden. Atlantic States Marine Fiseries Commission, Fisheries 
Management Report No. 37a, Washington, D. C.   

ASMFC.  2010.  Atlantic menhaden stock assessment and review panel reports.  Atlantic 
States Marine Fisheries Commission, Stock Assessment Report 10-02, 
Washington, D.C.  
(http://www.asmfc.org/speciesDocuments/menhaden/reports/stockAssessments/20
10AtlanticMenhadenStockAssessmentAndReviewPanelReport.pdf) 

 
ASMFC. 1999. Terms of reference and advisory report for the Atlantic menhaden stock 

assessment peer review. Atlantic States Marine Fisheries Commission, Stock 
Assessment Report 99.   

 
Berrien, P. and J. Sibunka. 1999. Distribution patterns of fish eggs in the United States 

Northeast Continental Shelf Ecosystem, 1977-87. National Oceanic and 
Atmospheric Administration. Technical Report, National Marine Fisheries 
Service 145.   

 
Boehlert G. W. and B. C. Mundy. 1988. Roles of behavioral and physical factors in larval 

and juvenile fish recruitment to estuarine nursery areas.  American Fisheries 
Society Symposium 3: 51-67.   

 
Checkley, Jr., D. M., P. B. Ortner, F. E. Werner, L. B. Settle, and S. R. Cummings. 1999. 

Spawning habitat of the Atlantic menhaden in Onslow Bay, North Carolina.  
Fisheries Oceanography 8: 22-36.   

 
Checkley, Jr., D. M., S. Raman, G. L. Maillet, and K. M. Mason. 1988. Winter storm 

effects on the spawning and larval drift of a pelagic fish. Nature 335: 346-348.   
 
Churchill, J. H., R. B. Forward, R. A. Luettich, J. L. Hench, W. F. Hettler, L. B. Crowder, 

and J. O. Blanton. 1999. Circulation and larval fish transport within a tidally 
dominated estuary. Fisheries Oceanography 8: 173-189.   

 
De Vries, M. C., R. B. Forward Jr., and W. F. Hettler. 1995. Behavioural response of 

larval Atlantic menhaden to different rates of temperature change. Journal of Fish 
Biology 47: 1081-1095.   



 50

 
Dryfoos, R. L., R. P. Cheek, and R. L. Kroger. 1973. Preliminary analysis of Atlantic 

menhaden, Brevoortia tyrannus, migrations, population structure, survival and 
exploitation rates, and availability as indicated from tag returns.  Fishery Bulletin, 
U. S. 71: 719-734.   

 
Fitzhugh, G. R. and W. F. Hettler. 1995. Temperature influence on postovulatory follicle 

degeneration in Atlantic menhaden, Brevoortia tyrannus. Fishery Bulletin, U.S. 
93: 568-572.   

 
Friedland, K. D. 1985. Functional morphology of the branchial basket structures 

associated with feeding in the Atlantic menhaden, Brevoortia tyrannus (Pisces: 
Clupeidae). Copeia 1985 (4): 1018-1027.   

 
Friedland, K. D., D. W. Ahrenholz, J. W. Smith, M. Manning, and J. Ryan. 2006. Sieving 

functional morphology of the gill raker feeding apparatus of Atlantic menhaden. 
Journal of Experimental Zoology 305 (12): 974-985.   

 
Forward, Jr., R. B., J. S. Burke, D. Rittschof and J. M. Welch. 1996. Photoresponses of 

larval Atlantic menhaden (Brevoortia tyrannus Latrobe) in offshore and estuarine 
waters: implications for transport. Journal of Experimental Marine Biology and 
Ecology 199: 123-135.   

 
Forward, Jr., R. B., M. C. De Vries, R. A. Tankersley, D. Rittschof, W. F. Hettler, J. S. 

Burke, J. M. Welch, and D. E. Hoss. 1999. Behavior and sensory physiology of 
Atlantic menhaden larvae, Brevoortia tyrannus, during horizontal transport. 
Fisheries Oceanography 3: 37-56.   

 
Forward, Jr., R. B., K. A. Reinsel, D. S. Peters, R. A. Tankersley, J. H. Churchill, L. B. 

Crowder, W. F. Hettler, S. M. Warlen, and M. D. Green. 1999. Transport of fish 
larvae through a tidal inlet. Fisheries Oceanography 8: 153-172.   

 
Forward, Jr., R. B. and R. A. Tankersley.  2001.  Selective tidal stream transport of 

marine animals. Oceanography and Marine Biology 39: 305-353.   
 
Forward, Jr., R. B., R. A. Tankersley, and J. S. Burke. 1996. Endogenous swimming 

rhythms of larval Atlantic menhaden, Brevoortia tyrannus Latrobe: Implications 
for vertical migration.  Journal of Experimental Marine Biology and Ecology 204: 
195-207.   

 
Govoni, J. J. and L. J. Pietrafesa. 1994. Eulerian views of layered water currents, vertical 

distribution of some larval fishes, and inferred advective transport over the 
continental shelf off North Carolina, USA, in winter. Fisheries Oceanography 3: 
120-132.    

 



 51

Hare, J. A. and R. K. Cowen. 1996. Transport mechanisms of larval and pelagic juvenile 
bluefish (Pomatomus saltatrix) from South Atlantic Bight spawning grounds to 
Middle Atlantic Bight nursery habitats.  Limnology and Oceanography 41: 1263-
1280.   

 
Hare, J. A., J. A. Quinlan, F. E. Werner, B. O. Blanton, J. J. Govoni, R. B. Forward, L. R. 

Settle, and D. E. Hoss. 1999. Larval transport during winter in the SABRE study 
area: results of a coupled vertical larval behavior-three-dimensional circulation 
model. Fisheries Oceanography 8: 57-76.   

 
Hare, J. A., S. Thorrold, H. Walsh, C. Reiss, A. Valle-Levinson, and C. Jones. 2005. 

Biophysical mechanisms of larval fish ingress into Chesapeake Bay. Marine 
Ecology Progress Series 303: 295-310.   

 
Hare, J. A., H. J. Walsh, and M. J. Wuenschel. 2006. Sinking rates of late-stage fish 

larvae: Implications for larval ingress into estuarine nursery habitats.  Journal of 
Experimental Marine Biology and Ecology 330: 493-504.   

 
Hettler, Jr., W. F. and J. A. Hare. 1998. Abundance and size of larval fishes outside the 

entrance to Beaufort Inlet, North Carolina. Estuaries 21: 476-499.   
 
Hettler, Jr., W. F., D. S. Peters, D. R. Colby, and E. H. Laban. 1997. Daily variability in 

abundance of larval fishes inside Beaufort Inlet. Fishery Bulletin, U.S. 95: 477-
493.   

 
Higham, J. R. and W. R. Nicholson. 1964. Sexual maturation and spawning of Atlantic 

menhaden. Fishery Bulletin, U.S. 82: 85-95.   
 
Hildebrand, S. F. 1964. An annotated list of salt and brackish water fishes, with a new 

name for a menhaden, found in North Carolina since the publication of “The 
Fishes o North Carolina” by Hugh M. Smith in 1907. Copeia 1941: 220-232. 

 
Hildebrand, S. F. 1948. A review of the American menhaden, genus Brevoortia, with a 

description of a new species. Smithsonian Miscellaneous Collections 107: 1-39.  
 
Hoss, D. E., D. M. Checkley Jr., and L. R. Settle. 1989. Diurnal buoyancy changes in 

larval Atlantic menhaden (Brevoortia tyrannus). Rapports et Proces-Verbaux des 
Reunions, Conseil Internationale pour l’Exploration de la Mer 191: 105-111.    

 
Joyuex, J. C. 1998. Spatial and temporal entry patterns of fish larvae into North Carolina 

estuaries: comparisons among one pelagic and two demersal species. Estuarine, 
Coastal and Shelf Science 47: 731-752.   

 
Joyeux, J. C. 2001. The retention of fish larvae in estuaries: among-tide variability at 

Beaufort Inlet, North Carolina, USA. Journal of Marine Biological Association of 
the United Kingdom 81: 857-868.   



 52

 
Judy, M. H. and R. M. Lewis. 1983. Distribution of eggs and larvae of Atlantic 

menhaden, Brevoortia tyrannus, along the Atlantic coast of the United States. 
United States Department of Commerce. National Oceanic and Atmospheric 
Administration, Technical Report, National Marine Fisheries Service Special 
Scientific Report Fisheries 774.   

 
June, F. C. 1961. Age and size composition of the menhaden catch along the Atlantic 

coast of the United States, 1957; with a brief review of the commercial fishery. 
United States Fish and Wildlife Service, Special Scientific Report Fisheries 373 
39 pp.   

 
June, F. C. and F. T. Carlson. 1971. Food of young Atlantic menhaden, Brevoortia 

tyrannus, in relation to metamorphosis. Fishery Bulletin, U.S. 68: 493-512.   
 
June, F. C. and W. R. Nicholson. 1964. Age and size composition of the menhaden catch 

along the Atlantic coast of the United States, 1958; with a brief review of the 
commercial fishery. United States Fish and Wildlife Service, Special Scientific 
Report Fisheries 446.40 pp.   

 
June, F.C. and J.W. Reintjes. 1960. Age and size composition of the menhaden catch 

along the Atlantic coast of the United States, 1956; with a brief review of the 
commercial fishery. United States Fish and Wildlife Service, Special Scientific 
Report Fisheries 336. 38 pp.   

 
Kendall, A. W. and J. W. Reintjes. 1975. Geographic and hydrographic distribution of 

Atlantic menhaden eggs and larvae along the middle Atlantic coast from RV 
Dolphin cruises, 1965-66. Fishery Bulletin, U.S. 73: 317-335.   

 
Kroger, R. L. and J. F. Guthrie. 1973. Migrations of tagged juvenile Atlantic menhaden. 

Transactions of the American Fisheries Society 102: 417-422.   
 
Lewis, R. M. 1965. The effect of minimum temperature on the survival of larval Atlantic 

menhaden, Brevoortia tyrannus. Transactions of the American Fisheries Society 
94: 409-412.   

 
Light, P. R. and K. W. Able. 2003. Juvenile Atlantic menhaden (Brevoortia tyrannus) in 

Delaware Bay, USA are the result of local and long-distance recruitment. 
Estuarine, Coastal and Shelf Science 57: 1007-1014.   

 
Love, J. W., D. F. Luers, and B. D. Williams. 2009. Spatio-temporal patterns of larval 

fish ingress to Chincoteague Bay, Maryland, USA during winter and spring 2004 
to 2007. Marine Ecology Progress Series 377:203-212.   

 
Maillet, G. L. and D. M. Checkley Jr. 1991. Storm-related variation in the growth rate of 

otoliths of larval Atlantic menhaden Brevoortia tyrannus: a time series analysis of 



 53

biological and physical variables and implications for larva growth and mortality. 
Marine Ecology Progress Series 79: 1-16.   

 
Mangel, M., and P. E. Smith. 1990. Presence-absence sampling for fisheries 

management. Canadian Journal of Fisheries and Aquatic Sciences 47: 1875-1887.   
 
Massmann, W. H., J. J. Norcross, and E. B. Joseph. 1962. Atlantic menhaden larvae in 

Virginia coastal waters. Chesapeake Science 3: 42-45.   

MDSG.  2009.  Menhaden Species Team.  Background and issues briefs.  Maryland Sea 
Grant, College Park, MD.  
(http://www.mdsg.umd.edu/images/uploads/siteimages/Menhaden_Species_Team
_Briefs.pdf) 

 
Nicholson, W. R. 1971. Coastal movements of Atlantic menhaden as inferred from 

changes in age and length distribution. Transactions of the American Fisheries 
Society 100: 708-716.   

 
Olney, J. E. and G. W. Boehlert. 1988. Nearshore ichthyoplankton associated with 

seagrass beds in the lower Chesapeake Bay.  Marine Ecology Progress Series 45: 
33-43.   

 
Powell, A. B. and G. Phonlor. 1986. Early life history of Atlantic menhaden, Brevoortia 

tyrannus, and gulf menhaden, B. patronus. Fishery Bulletin, U.S. 84: 991-995.   
 
Quinlan, J. A., B. O. Blanton, T. J. Miller, and F. E. Werner. 1999. From spawning 

grounds to the estuary: using linked individual-based and hydrographical models 
to interpret patterns and processes in the oceanic phase of Atlantic menhaden 
Brevoortia tyrannus life history. Fisheries Oceanography 8: 224-246.   

 
Quinlan, J. A. and L. B. Crowder. 1999. Searching for sensitivity in the life history of 

Atlantic menhaden: inferences from a matrix model. Fisheries Oceanography 8: 
124-133.   

 
Reintjes, J. W. 1960. Continuous distribution of menhaden along the South Atlantic and 

Gulf coasts of the United States. Proceedings Gulf Caribbean Fisheries Institute 
12: 31-35.   

 
Reintjes, J. W. 1961. Menhaden eggs and larvae from M/V Theodore N. Gill cruises, 

South Atlantic coast of the United States, 1953-1954. United States Fish and 
Wildlife Service, Special Scientific Report Fisheries 393. 7 pp. 

 
Reintjes, J. W. 1964. Annotated bibliography on biology of menhadens and menhaden 

like fishes of the world. Fishery Bulletin, U.S. 63: 531-549.   
 
Reintjes, J. W. 1969. Synopsis of biological data on the Atlantic menhaden, Brevoortia 

tyrannus. United States Fish and Wildlife Service, Circular 320.  30 pp. 



 54

 
Reiss, C. S. and J. R. McConaugha. 1999. Cross-frontal transport and distribution of 

ichthyoplankton associated with Chesapeake Bay plume dynamics. Continental 
Shelf Research 19: 151-170.   

 
Rice, J. A., J. A Quinlan, S. W. Nixon, W. F. Hettler Jr., S. M. Warlen, and P. M. 

Stegmann. 1999. Spawning and transport dynamics of Atlantic menhaden: 
inferences from characteristics of immigrating larvae and predictions of 
hydrodynamic model. Fisheries Oceanography 8: 93-110.   

 
Rogers S. G. and M. J. Van Den Avyle. 1989. Species profiles: life histories and 

environmental requirements of coastal fishes and invertebrates (Mid-Atlantic) -- 
Atlantic menhaden. United States Fish and Wildlife Service, Biological Report 
82(11.108).   

 
Roithmayr, C. M. 1963. Distribution of fishing by purse seine vessels for Atlantic 

menhaden, 1955-59. United States Fish and Wildlife Service, Special Scientific 
Report Fisheries 434.  22 pp. 

 
Rowe, P. M. and C. E. Epifanio. 1994. Flux and transport of larval weakfish in Delaware 

Bay, USA. Marine Ecology Progress Series 110: 115-120.  
 
Schaffler, J. J., C. S. Reiss, and C. M. Jones.  2009. Patterns of larval Atlantic croaker 

ingress into Chesapeake Bay, USA. Marine Ecology Progress Series 378: 187-
197.   

 
Shanks, A. 1995. Mechanisms of cross-shelf dispersal of larval invertebrates and fish. In: 

McEdward, L. R. pp. 324-367. Ecology of marine invertebrate larvae, vol.1. CRC 
Press, Boca Raton, FL.   

 
Sokal, R. R. and J. Rohlf. 1969. Biometry. W. H. Freeman and Company.   
 
Stegmann, P. M., J. A. Quinlan, F. E. Werner, B. O. Blanton, P. Berrien. 1999. Atlantic 

menhaden recruitment to southern estuary: defining potential spawning regions. 
Fisheries Oceanography 8: 111-123.   

 
Taylor, J. C., W. A. Mitchell, J. A. Buckel. 2009. Relationships between larval and 

juvenile abundance of winter-spawned fishes in North Carolina, USA. Marine and 
Coastal Fisheries: Dynamics, Management, and Ecosystem Science 1: 12-21.   

 
Uphoff, Jr., J. H. 1993.  Determining striped bass spawnng stock status from the presence 

or absence of eggs in ichthyoplankton survey data.  North American Journal of 
Fisheries Management 13:645-656.    

 
Valle-Levinson, A., K. M. M. Lwiza. 1998. Observations on the influence of 

downwelling winds on the Chesapeake Bay outflow. pp. 247-256.  In: Physics of 



 55

estuaries and coastal seas. J. Dronkers and M. Scheffers, (eds.).  Balkema, 
Rotterdam .   

 
Valle-Levinson, A., K. C. Wong, K. T. Bosley. 2001. Observations of the wind-induced 

exchange at the entrance to Chesapeake Bay. Journal of Marine Research 59: 391-
416.   

 
Venables, W. N., C. M. Dichmont. 2004. GLMs, GAMS, and GLMMs: an overview of 

theory for applications in fisheries research. Fisheries Research 70: 319-337.   
 
Warlen, S. M. 1992. Age, growth, and size distribution of larval Atlantic menhaden off 

North Carolina. Transactions of the American Fisheries Society 121: 588-598.   
 
Warlen, S. M. 1994. Spawning time and recruitment dynamics of larval Atlantic 

menhaden, Brevoortia tyrannus, into a North Carolina estuary. Fishery Bulletin, 
U.S. 92: 420-433.   

 
Warlen, S. M., K. W. Able, E. H. Laban. 2002. Recruitment of larval Atlantic menhaden 

(Brevoortia tyrannus) to North Carolina and New Jersey estuaries: evidence for 
larval transport northward along the east coast of the United States. Fishery 
Bulletin, U.S. 100: 609-623.   

 
Weinstein, M. P., S. L. Weiss, R. G. Hodson, L. R. Gerry. 1980. Retention of three taxa 

of postlarval fishes in an intensively flushed tidal estuary, Cape Fear River, North 
Carolina. Fishery Bulletin, U.S. 78: 419-436.   

 
Werner, F. E., B. O. Blanton, J. A. Quinlan, R. A. Luettich Jr. 1999. Physical 

oceanography of the North Carolina continental shelf during the fall and winter 
seasons: implications for the transport of larval menhaden. Fisheries 
Oceanography 8: 7-21.   

 



 56

Table 2.1.  Research cruise dates, mean surface temperatures (°C), number of stations 
sampled per cruise, number of ichthyoplankton samples per cruise, total number of 
Atlantic menhaden larvae collected, and mean total length (mm), and length ranges from 
the ingress surveys at the Chesapeake Bay mouth.  All except two of the cruises were 
conducted on RV Aquarius.  Samples were collected at sites indicated in Figure 2.1. 

1Cruises conducted on RV Hugh Sharp as part of the regional larval ingress program 
supported by Maryland, Delaware, and Virginia Sea Grant.   
 

28.8, 24.0-35.065241011.410 Apr '08

26.7, 17.0-31.03672299.717-18 Mar '08

27.3, 16.0-36.525855287.225-26 Feb '081

29.4, 20.0-37.017232127.414-16 Jan '08

28.4, 16.0-34.0565069319.910-13 Dec '07

29.1, 11.0-32.01079441612.227-30 Nov '07

24.0, 20.0-29.0128902413.912-14 Nov '071

29.0, 23.0-33.528462110.523-25 Apr '07

26.6, 21.0-31.82466299.820-22 Mar '07

27.9, 9.0-37.080872327.319-21 Feb '07

33.6, 27.0-40.010562611.011-12 Jan '07

31.0, 25.0-35.040381814.05-6 Dec '06

22.9, 18.0-27.030582514.06-8 Nov '06

28.1, 27.0-30.07281212.412-13 Apr '06

27.0, 24.0-30.5638198.927-19 Mar '06

26.5, 12.0-36.052836155.813-15 Feb '06

27.6, 6.6-38.053134156.79-11 Jan '06

22.5, 10.5-33.51092089.17-8 Dec '05

Length-range
No. 

Larvae
No. 

Samples
No. 

StationsTempCruise Dates

28.8, 24.0-35.065241011.410 Apr '08

26.7, 17.0-31.03672299.717-18 Mar '08

27.3, 16.0-36.525855287.225-26 Feb '081

29.4, 20.0-37.017232127.414-16 Jan '08

28.4, 16.0-34.0565069319.910-13 Dec '07

29.1, 11.0-32.01079441612.227-30 Nov '07

24.0, 20.0-29.0128902413.912-14 Nov '071

29.0, 23.0-33.528462123-25 Apr '07

26.6, 21.0-31.82466299.820-22 Mar '07

27.9, 9.0-37.080872327.319-21 Feb '07

33.6, 27.0-40.010562611.011-12 Jan '07

31.0, 25.0-35.040381814.05-6 Dec '06

22.9, 18.0-27.030582514.06-8 Nov '06

28.1, 27.0-30.07281212.412-13 Apr '06

27.0, 24.0-30.5638198.927-19 Mar '06

26.5, 12.0-36.052836155.813-15 Feb '06

27.6, 6.6-38.053134156.79-11 Jan '06

22.5, 10.5-33.51092089.17-8 Dec '05

Length-range
No. 

Larvae
No. 

Samples
No. 

StationsTempCruise Dates

28.8, 24.0-35.065241011.410 Apr '08

26.7, 17.0-31.03672299.717-18 Mar '08

27.3, 16.0-36.525855287.225-26 Feb '081

29.4, 20.0-37.017232127.414-16 Jan '08

28.4, 16.0-34.0565069319.910-13 Dec '07

29.1, 11.0-32.01079441612.227-30 Nov '07

24.0, 20.0-29.0128902413.912-14 Nov '071

29.0, 23.0-33.528462110.523-25 Apr '07

26.6, 21.0-31.82466299.820-22 Mar '07

27.9, 9.0-37.080872327.319-21 Feb '07

33.6, 27.0-40.010562611.011-12 Jan '07

31.0, 25.0-35.040381814.05-6 Dec '06

22.9, 18.0-27.030582514.06-8 Nov '06

28.1, 27.0-30.07281212.412-13 Apr '06

27.0, 24.0-30.5638198.927-19 Mar '06

26.5, 12.0-36.052836155.813-15 Feb '06

27.6, 6.6-38.053134156.79-11 Jan '06

22.5, 10.5-33.51092089.17-8 Dec '05

Length-range
No. 

Larvae
No. 

Samples
No. 

StationsTempCruise Dates

28.8, 24.0-35.065241011.410 Apr '08

26.7, 17.0-31.03672299.717-18 Mar '08

27.3, 16.0-36.525855287.225-26 Feb '081

29.4, 20.0-37.017232127.414-16 Jan '08

28.4, 16.0-34.0565069319.910-13 Dec '07

29.1, 11.0-32.01079441612.227-30 Nov '07

24.0, 20.0-29.0128902413.912-14 Nov '071

29.0, 23.0-33.528462123-25 Apr '07

26.6, 21.0-31.82466299.820-22 Mar '07

27.9, 9.0-37.080872327.319-21 Feb '07

33.6, 27.0-40.010562611.011-12 Jan '07

31.0, 25.0-35.040381814.05-6 Dec '06

22.9, 18.0-27.030582514.06-8 Nov '06

28.1, 27.0-30.07281212.412-13 Apr '06

27.0, 24.0-30.5638198.927-19 Mar '06

26.5, 12.0-36.052836155.813-15 Feb '06

27.6, 6.6-38.053134156.79-11 Jan '06

22.5, 10.5-33.51092089.17-8 Dec '05

Length-range
No. 

Larvae
No. 

Samples
No. 

StationsTempCruise Dates
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Table 2.2.  Mean water-column temperatures (°C) and salinities.  Monthly and annual 
means at the Chesapeake Bay mouth, averaged from CTD or YSI sonde depth profiles 
taken at each station during the three-year study.   

 
* This row indicates data from cruises onboard the RV Hugh R. Sharp.

27.6810.3126.359.6525.608.25Annual

23.2111.3126.3912.3826.3511.68Apr

25.109.6424.907.4428.588.50Mar

27.47*7.18*27.084.5322.986.04Feb

26.237.0525.7410.3325.477.01Jan

28.9410.3527.6411.3923.839.20Dec

29.4712.4226.8614.29no datano dataNov

28.94*13.85*no datano datano datano dataNov

SalTempSalTempSalTemp

2007-082006-072005-06

* This row indicates data from cruises onboard the RV Hugh R. Sharp.

27.6810.3126.359.6525.608.25Annual

23.2111.3126.3912.3826.3511.68Apr

25.109.6424.907.4428.588.50Mar

27.47*7.18*27.084.5322.986.04Feb

26.237.0525.7410.3325.477.01Jan

28.9410.3527.6411.3923.839.20Dec

29.4712.4226.8614.29no datano dataNov

28.94*13.85*no datano datano datano dataNov

SalTempSalTempSalTemp

2007-082006-072005-06
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Table 2.3.  Mean temperatures and salinities at the Chesapeake Bay mouth at above (Top) 
and below (Bot) pycnocline in the water column for each cruise and year during the three 
year study.   

28.28 (0.20)27.07 (0.23)10.34 (0.21)10.28 (0.20)Year

24.91 (1.11)21.51 (0.67)11.04 (0.19)11.59 (0.08)Apr '08

26.13 (0.63)24.07 (0.39)9.64 (0.06)9.64 (0.07)Mar '08

28.15 (0.35)26.80(0.39)7.23 (0.03)7.14 (0.03)Feb '08

26.87 (0.53)25.59 (0.43)7.24 (0.20)6.85 (0.14)Jan '08

29.25 (0.15)28.62 (0.18)10.39 (0.08)10.31 (0.06)Dec '07

29.85 (0.48)29.09 (0.48)12. 50 (0.11)12.35 (0.09)Nov '07

29.33 (0.33)28.55 (0.37)13.86 (0.10)13.84 (0.11)Nov '07*

27.33 (0.21)25.37 (0.23)9.56 (0.26)9.75 (0.28)Year

29.05 (0.64)23.49 (0.86)11.45 (0.20)13.31 (0.21)Apr '07

26.15 (0.61)23.65 (0.51)7.31 (0.05)7.57 (0.08)Mar '07

27.47 (0.29)26.68 (0.32)4.57 (0.14)4.49 (0.13)Feb '07

27.28 (0.46)24.21 (0.41)11.58 (0.13)10.08 (0.09)Jan '07

28.11 (0.46)27.17 (0.53)11.45 (0.11)11.34 (0.10)Dec '06

27.25 (0.47)26.46 (0.46)14.33 (0.08)14.25 (0.09)Nov '06

26.54 (0.35)24.64 (0.33)8.20 (0.20)8.30 (0.24)Year

27.65 (0.60)25.06 (0.73)11.30 (0.20)12.06 (0.12)Apr '06

29.60 (0.35)27.55 (0.60)8.38 (0.05)8.63 (0.07)Mar '06

23.48 (0.58)22.48 (0.45)6.11 (0.09)5.96 (0.07)Feb '06

26.89 (0.63)23.97 (0.60)7.15 (0.09)6.87 (0.07)Jan '06

24.03 (0.44)23.63 (0.37)9.25 (0.11)9.16 (0.07)Dec '05

BotTopBotTop

SalinityTemperature

28.28 (0.20)27.07 (0.23)10.34 (0.21)10.28 (0.20)Year

24.91 (1.11)21.51 (0.67)11.04 (0.19)11.59 (0.08)Apr '08

26.13 (0.63)24.07 (0.39)9.64 (0.06)9.64 (0.07)Mar '08

28.15 (0.35)26.80(0.39)7.23 (0.03)7.14 (0.03)Feb '08

26.87 (0.53)25.59 (0.43)7.24 (0.20)6.85 (0.14)Jan '08

29.25 (0.15)28.62 (0.18)10.39 (0.08)10.31 (0.06)Dec '07

29.85 (0.48)29.09 (0.48)12. 50 (0.11)12.35 (0.09)Nov '07

29.33 (0.33)28.55 (0.37)13.86 (0.10)13.84 (0.11)Nov '07*

27.33 (0.21)25.37 (0.23)9.56 (0.26)9.75 (0.28)Year

29.05 (0.64)23.49 (0.86)11.45 (0.20)13.31 (0.21)Apr '07

26.15 (0.61)23.65 (0.51)7.31 (0.05)7.57 (0.08)Mar '07

27.47 (0.29)26.68 (0.32)4.57 (0.14)4.49 (0.13)Feb '07

27.28 (0.46)24.21 (0.41)11.58 (0.13)10.08 (0.09)Jan '07

28.11 (0.46)27.17 (0.53)11.45 (0.11)11.34 (0.10)Dec '06

27.25 (0.47)26.46 (0.46)14.33 (0.08)14.25 (0.09)Nov '06

26.54 (0.35)24.64 (0.33)8.20 (0.20)8.30 (0.24)Year

27.65 (0.60)25.06 (0.73)11.30 (0.20)12.06 (0.12)Apr '06

29.60 (0.35)27.55 (0.60)8.38 (0.05)8.63 (0.07)Mar '06

23.48 (0.58)22.48 (0.45)6.11 (0.09)5.96 (0.07)Feb '06

26.89 (0.63)23.97 (0.60)7.15 (0.09)6.87 (0.07)Jan '06

24.03 (0.44)23.63 (0.37)9.25 (0.11)9.16 (0.07)Dec '05

BotTopBotTop

SalinityTemperature
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Table 2.4.  Mean total lengths (mm) of measured Atlantic menhaden larvae collected at 
the Chesapeake Bay mouth during the three-year program.  The column ‘Tukey’ is the 
outcome of the Tukey Honestly Significant Difference multiple comparisons tests.  Mean 
lengths in any two cruise months sharing a letter do not differ significantly. 
 

 
 
 
 

33420.05B28.132007-08

9390.1B27.942006-07

11720.12A26.882005-06

nseTukeyMean LengthYear

33420.05B28.132007-08

9390.1B27.942006-07

11720.12A26.882005-06

nseTukeyMean LengthYear
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Table 2.5.  Mean total lengths (mm) of Atlantic menhaden larvae collected at the 
Chesapeake Bay mouth during each cruise in the three-year program. The column 
‘Tukey’ is the outcome of the Tukey Honestly Significant Difference multiple 
comparisons tests.  Mean lengths in any two cruise months within each year sharing a 
letter do not differ significantly.   

BF650.2928.78Apr '08

DE2900.1126.66Mar '08

CE2820.1727.30Feb '08*

CDF1630.2629.36Jan '08

B19900.0528.58Dec '07

B4300.1328.17Nov '07

A1220.1924.07Nov '07*

CD280.4428.97Apr '07

D230.5326.49Mar '07

D8100.1027.91Feb '07

BC101.1933.60Jan '07

B390.4430.97Dec '06

A290.3522.90Nov '06

B70.4128.07Apr '06

BC61.1727.00Mar '06

B5220.1427.00Feb '06

B5310.1827.59Jan '06

AC1060.5422.66Dec '05

TukeynseMean LengthMonth

BF650.2928.78Apr '08

DE2900.1126.66Mar '08

CE2820.1727.30Feb '08*

CDF1630.2629.36Jan '08

B19900.0528.58Dec '07

B4300.1328.17Nov '07

A1220.1924.07Nov '07*

CD280.4428.97Apr '07

D230.5326.49Mar '07

D8100.1027.91Feb '07

BC101.1933.60Jan '07

B390.4430.97Dec '06

A290.3522.90Nov '06

B70.4128.07Apr '06

BC61.1727.00Mar '06

B5220.1427.00Feb '06

B5310.1827.59Jan '06

AC1060.5422.66Dec '05

TukeynseMean LengthMonth

 
 
* Indicates larvae collected from the RV Hugh Sharp. 
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Table 2.6.  Mean total lengths (mm) of larval Atlantic menhaden at the five stations 
sampled across the Chesapeake Bay mouth.  The column ‘Tukey’ is the outcome of the 
Tukey Honestly Significant Difference multiple comparisons tests. 

 

B9640.0925.5NC

B8900.0827.5MG

B10120.1127.5CC

B3710.1727.1TC

A4890.1628.5LH

TukeynseMean LengthStation

B9640.0925.5NC

B8900.0827.5MG

B10120.1127.5CC

B3710.1727.1TC

A4890.1628.5LH

TukeynseMean LengthStation
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Table 2.7.  Mean total lengths (mm) of larval Atlantic menhaden that were collected 
among 4 tide stages.  SE is slack before ebb tide, E is ebbing tide, SF is slack before 
flood tide, and F is flooding tide.  The column ‘Tukey’ is the outcome of the Tukey 
Honestly Significant Difference multiple comparisons tests.  

 
 

A24300.0727.3F

A1290.427.6SF

A9960.0827.9E

A1720.1729.5SE

TukeynseMean LengthTide

A24300.0727.3F

A1290.427.6SF

A9960.0827.9E

A1720.1729.5SE

TukeynseMean LengthTide
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Table 2.8.  Analysis of variance table for the nested ANOVA used to evaluate larval 
concentrations of Atlantic menhaden at the Chesapeake Bay mouth.  The table includes 
degrees of freedom, sum of squares, mean squares, Fisher’s F-value, and p-values for 
each of the terms in the analysis.   

 
Tide = tide stage; Top vs Bottom = above vs below pycnocline; Month = cruise; Station 
is the sampling site at the Bay mouth; Day vs Night is the comparison of day vs night 
larval concentrations.   
 

1.771100.81623Residuals

< 2.2E-16156.42276.861797.15160Total

0.1611.192.11122.3958Station within Month-within Year

1.23E-158.3314.71191.2613Day vs. night within Month-within Year

0.0581.642.9043.5515Top vs. bot within Month-within Year

0.0111.723.0588.3729Tide within Month-within Year

0.0931.582.7933.4912Station within Year

< 2.2E-1643.6677.15231.453Day vs. night within Year

0.0025.119.0227.073Top vs. bot within Year

1.86E-128.7615.47139.309Tide within Year

< 2.2E-1627.0347.77716.4815Month within Year

< 2.2E-1657.67101.89203.792Year

Pr(>F)F valueMean SqSum SqDf

1.771100.81623Residuals

< 2.2E-16156.42276.861797.15160Total

0.1611.192.11122.3958Station within Month-within Year

1.23E-158.3314.71191.2613Day vs. night within Month-within Year

0.0581.642.9043.5515Top vs. bot within Month-within Year

0.0111.723.0588.3729Tide within Month-within Year

0.0931.582.7933.4912Station within Year

< 2.2E-1643.6677.15231.453Day vs. night within Year

0.0025.119.0227.073Top vs. bot within Year

1.86E-128.7615.47139.309Tide within Year

< 2.2E-1627.0347.77716.4815Month within Year

< 2.2E-1657.67101.89203.792Year

Pr(>F)F valueMean SqSum SqDf
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Table 2.9.  Calculations; F-ratio tests of nested terms.  Significance of higher level terms 
is tested for amount of variability explained compared to lower level terms.  A significant 
F-test indicates that the variability accounted in the numerator is greater than the 
variability accounted by the denominator in the model.   
 
Fmodel = MSmodel/MSerror = 276.86/1.77 = 156.42; with 160/623 df; p < 0.001 
 
Fyear = MSyear/MSmonth:year = 101.89/47.77 = 2.13; with 2/15 df; p = 0.153 
 
Ftide:year = MStide:year/MStide:month:year = 15.47/3.05 = 5.07; with 9/29 df; p < 0.001 
 
Fdn:year = MSdn:year/MSdn:month:year = 77.15/14.71 = 5.24; with 3/13 df; p = 0.014 
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Table 2.10.  Geometric means and standard errors (arithmetic means and standard errors 
are in parentheses) for larval Atlantic menhaden concentrations (number per 100 m3) in 
each larval ingress cruise at the Chesapeake Bay mouth. The column ‘Tukey’ is the 
outcome of the Tukey Honestly Significant Difference multiple comparisons tests.  Mean 
concentrations in any two cruise months within each year sharing a letter do not differ 
significantly.   

AC240.29 (0.27)0.29 (0.84)Apr '08

BC220.38 (2.45)1.16 (5.07)Mar '08

AC560.23 (0.40)0.34 (1.48)Feb '08*

AC320.35 (0.90)0.30 (2.27)Jan '08

B700.32 (7.33)1.36 (23.07)Dec '07

BC360.41 (8.17)0.61 (14.97)Nov '07

A540.21 (0.21)0.15 (0.77)Nov '07*

A480.15 (0.06)0.05 (0.18)Apr '07

A660.10 (0.04)0.03 (0.11)Mar '07

B700.21 (0.73)1.04 (3.71)Feb '07

A560.07 (0.03)0.01 (0.04)Jan '07

A380.20 (0.10)0.11 (0.34)Dec '06

A580.13 (0.06)0.04 (0.17)Nov '06

A280.13 (0.04)0.02 (0.07)Apr '06

A380.10 (0.02)0.02 (0.04)Mar '06

B360.29 (1.01)1.63 (4.62)Feb '06

B370.30 (1.20)1.14 (4.40)Jan '06

A200.40 (1.15)0.22 (1.82)Dec '05

TukeynseMeanCruise

AC240.29 (0.27)0.29 (0.84)Apr '08

BC220.38 (2.45)1.16 (5.07)Mar '08

AC560.23 (0.40)0.34 (1.48)Feb '08*

AC320.35 (0.90)0.30 (2.27)Jan '08

B700.32 (7.33)1.36 (23.07)Dec '07

BC360.41 (8.17)0.61 (14.97)Nov '07

A540.21 (0.21)0.15 (0.77)Nov '07*

A480.15 (0.06)0.05 (0.18)Apr '07

A660.10 (0.04)0.03 (0.11)Mar '07

B700.21 (0.73)1.04 (3.71)Feb '07

A560.07 (0.03)0.01 (0.04)Jan '07

A380.20 (0.10)0.11 (0.34)Dec '06

A580.13 (0.06)0.04 (0.17)Nov '06

A280.13 (0.04)0.02 (0.07)Apr '06

A380.10 (0.02)0.02 (0.04)Mar '06

B360.29 (1.01)1.63 (4.62)Feb '06

B370.30 (1.20)1.14 (4.40)Jan '06

A200.40 (1.15)0.22 (1.82)Dec '05

TukeynseMeanCruise
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Table 2.11.  Geometric mean concentrations (number per 100 m3) of Atlantic menhaden 
larvae at above (Top) and below (Bottom) pycnocline levels in the water column by year.  
Arithmetic means are in parentheses.  Superscripted letters are Tukey Honestly 
Significant Difference ranking comparisons between top and bottom for each year.   

 
 
 

1470.20 (3.71)0.50 (11.63)A1470.16 (1.87)0.48 (5.25)A2007-08

1680.12 (0.31)0.10 (1.11)A1680.11 (0.15)0.13 (0.67)A2006-07

800.19 (0.26)0.17 (1.07)B790.23 (0.78)0.48 (3.59)A2005-06

nseMeannseMeanYear

BottomTop

1470.20 (3.71)0.50 (11.63)A1470.16 (1.87)0.48 (5.25)A2007-08

1680.12 (0.31)0.10 (1.11)A1680.11 (0.15)0.13 (0.67)A2006-07

800.19 (0.26)0.17 (1.07)B790.23 (0.78)0.48 (3.59)A2005-06

nseMeannseMeanYear

BottomTop
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Table 2.12.  Geometric mean larval concentrations (number per 100 m3) (arithmetic 
means and standard errors are in parentheses) at tide stages.  The column ‘Tukey’ is the 
outcome of the Tukey Honestly Significant Difference multiple comparisons tests.  Mean 
lengths in any two tide stages sharing a letter do not differ significantly.  SE is slack 
before ebb tide, E is ebbing tide, SF is slack before flood tide, and F is flooding tide.

A1180.23 (3.68)0.95 (15.03)F

AC200.41 (1.23)0.55 (2.51)SF

BC1440.14 (2.92)0.23 (4.01)E

A120.56 (2.41)2.30 (6.71)SE

2007-08

A1660.13 (0.33)0.16 (1.34)F

A200.24 (0.08)0.07 (0.20)SF

A1280.12 (0.12)0.08 (0.51)E

A220.26 (0.29)0.05 (0.38)SE

2006-07

A760.23 (0.69)0.44 (2.91)F

A40.38 (1.49)3.54 (4.33)SF

A750.21 (0.54)0.18 (1.72)E

A40.65 (0.22)0.06 (0.22)SE

TukeynseMeanTide

2005-06

A1180.23 (3.68)0.95 (15.03)F

AC200.41 (1.23)0.55 (2.51)SF

BC1440.14 (2.92)0.23 (4.01)E

A120.56 (2.41)2.30 (6.71)SE

2007-08

A1660.13 (0.33)0.16 (1.34)F

A200.24 (0.08)0.07 (0.20)SF

A1280.12 (0.12)0.08 (0.51)E

A220.26 (0.29)0.05 (0.38)SE

2006-07

A760.23 (0.69)0.44 (2.91)F

A40.38 (1.49)3.54 (4.33)SF

A750.21 (0.54)0.18 (1.72)E

A40.65 (0.22)0.06 (0.22)SE

TukeynseMeanTide

2005-06
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Table 2.13.  Geometric mean concentrations (numbers per 100 m3) of larval Atlantic 
menhaden collected during the day and night.  Arithmetic means are in parentheses.  
Superscripted letters are Tukey Honestly Significant Difference comparisons between 
day and night.  There is no comparison in April 2006 because no samples were taken at 
night during that cruise.   

 
 

1600.19 (3.71)1.02 (14.20)B1340.14 (0.81)0.18 (1.57)AYear

100.41 (0.51)1.00 (1.79)A140.24 (0.05)0.09 (0.17)AApr '08

120.55 (4.29)2.44 (8.71)A100.36 (0.16)0.45 (0.70)AMar '08

300.32 (0.64)0.23 (1.49)A260.31 (0.43)0.52 (1.46)AFeb '08*

120.63 (2.10)0.79 (4.20)A200.37 (0.63)0.15 (1.11)AJan '08

380.31 (12.68)9.30 (39.45)B320.28 (3.36)0.08 (3.62)ADec '07

220.56 (13.12)1.21 (23.84)B140.46 (0.55)0.18 (1.04)ANov '07

360.27 (0.28)0.18 (0.89)A180.34 (0.30)0.11 (0.55)ANov '07*

1540.14 (0.36)0.19 (1.53)B1820.09 (0.08)0.06 (0.35)AYear

200.22 (0.09)0.05 (0.17)A280.20 (0.09)0.05 (0.18)AApr '07

260.21 (0.09)0.09 (0.24)A400.07 (0.02)0.01 (0.02)AMar '07

340.28 (1.34)2.52 (6.19)B360.26 (0.34)0.43 (1.36)AFeb '07

200.18 (0.07)0.03 (0.09)A360.05 (0.01)0.00 (0.01)AJan '07

260.26 (0.14)0.16 (0.45)A120.25 (0.06)0.04 (0.10)ADec '06

280.15 (0.04)0.04 (0.09)A300.20 (0.11)0.06 (0.24)ANov '06

390.29 (0.45)0.28 (1.47)B1200.19 (0.53)0.32 (2.60)AYear

00.00 (0.00)0.00 (0.00)280.13 (0.04)0.02 (0.07)Apr '06

100.25 (0.06)0.03 (0.08)A280.09 (0.02)0.01 (0.03)AMar '06

120.51 (1.11)1.24 (3.27)A240.36 (1.40)1.86 (5.29)AFeb '06

130.49 (0.69)0.30 (1.31)A240.32 (1.73)2.22 (6.08)AJan '06

40.42 (0.08)0.04 (0.08)A160.47 (1.43)0.30 (2.26)ADec '05

nseMeannseMeanCruise

NightDay

1600.19 (3.71)1.02 (14.20)B1340.14 (0.81)0.18 (1.57)AYear

100.41 (0.51)1.00 (1.79)A140.24 (0.05)0.09 (0.17)AApr '08

120.55 (4.29)2.44 (8.71)A100.36 (0.16)0.45 (0.70)AMar '08

300.32 (0.64)0.23 (1.49)A260.31 (0.43)0.52 (1.46)AFeb '08*

120.63 (2.10)0.79 (4.20)A200.37 (0.63)0.15 (1.11)AJan '08

380.31 (12.68)9.30 (39.45)B320.28 (3.36)0.08 (3.62)ADec '07

220.56 (13.12)1.21 (23.84)B140.46 (0.55)0.18 (1.04)ANov '07

360.27 (0.28)0.18 (0.89)A180.34 (0.30)0.11 (0.55)ANov '07*

1540.14 (0.36)0.19 (1.53)B1820.09 (0.08)0.06 (0.35)AYear

200.22 (0.09)0.05 (0.17)A280.20 (0.09)0.05 (0.18)AApr '07

260.21 (0.09)0.09 (0.24)A400.07 (0.02)0.01 (0.02)AMar '07

340.28 (1.34)2.52 (6.19)B360.26 (0.34)0.43 (1.36)AFeb '07

200.18 (0.07)0.03 (0.09)A360.05 (0.01)0.00 (0.01)AJan '07

260.26 (0.14)0.16 (0.45)A120.25 (0.06)0.04 (0.10)ADec '06

280.15 (0.04)0.04 (0.09)A300.20 (0.11)0.06 (0.24)ANov '06

390.29 (0.45)0.28 (1.47)B1200.19 (0.53)0.32 (2.60)AYear

00.00 (0.00)0.00 (0.00)280.13 (0.04)0.02 (0.07)Apr '06

100.25 (0.06)0.03 (0.08)A280.09 (0.02)0.01 (0.03)AMar '06

120.51 (1.11)1.24 (3.27)A240.36 (1.40)1.86 (5.29)AFeb '06

130.49 (0.69)0.30 (1.31)A240.32 (1.73)2.22 (6.08)AJan '06

40.42 (0.08)0.04 (0.08)A160.47 (1.43)0.30 (2.26)ADec '05

nseMeannseMeanCruise

NightDay
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 Figure 2.1.  Map of study location and sampling sites across the mouth of the 
Chesapeake Bay.   
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Figure 2.2.  Frequencies of Atlantic menhaden larvae catches in relation to mean water-
column temperature at the Chesapeake Bay mouth during a) 2005-06, b) 2006-07, and c) 
2007-08.  Note differences in y-axis scales. 
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Figure 2.3.  Length-frequency distributions of Atlantic menhaden larvae collected at the 
Chesapeake Bay mouth during the three-year project.   
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Figure 2.4.  Length-frequency distributions of Atlantic menhaden larvae collected at the 
Chesapeake Bay mouth from a) 2005-06, b) 2006-07, and c) 2007-08.  Each distribution 
is stacked by cruise month. Note differences in y-axis scales. * Indicates larvae from 
Hugh R. Sharp cruises.   
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Figure 2.5.  Annual mean larval concentrations (number per 100 m3) ± standard error for 
Atlantic menhaden larvae collected at the Chesapeake Bay mouth.  Larval concentrations 
were log-transformed for statistical analysis.   
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Figure 2.6.  Monthly mean Atlantic menhaden larval concentrations (number per 100 m3) 
± standard error at the Chesapeake Bay mouth for a. 2005-06, b. 2006-07, c. 2007-08.  
Mean concentrations were log-transformed for statistical analysis.  Note differences in y-
axis scales.  Letters above bars are Tukey rankings indicating significance.  Bars that 
share a letter are not significantly different.   
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Figure 2.7.  Relationship between the standard deviation and the mean concentrations of 
Atlantic menhaden larvae for each day of sampling during the 18 research cruises at the 
mouth of the Chesapeake Bay.   
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Figure 2.8.  Annual mean larval Atlantic menhaden concentrations (number per 100 m3) 
± standard error among stations at the Chesapeake Bay mouth (see Figure 2.1).  Mean 
concentrations were log-transformed for statistical analysis.  S indicates south side of Bay 
mouth; N indicates north side. 
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Figure 2.9.  Annual comparisons of mean larval concentrations (number per 100 m3) ± 
standard error of Atlantic menhaden larvae between above (top) and below (bottom) the 
pycnocline in the water column at the Chesapeake Bay mouth.  Mean concentrations 
were log transformed for statistical analysis.  Letters above bars are Tukey rankings 
indicating significance.  Bars that share a letter are not significantly different.   

M
ea

n 
C

on
ce

nt
ra

tio
n 

(la
rv

ae
/1

00
m

3 )

A

B

A
A

A

M
ea

n 
C

on
ce

nt
ra

tio
n 

(la
rv

ae
/1

00
m

3 )

A

B

A
A

A



 78

Figure 2.10.  Annual mean larval concentrations (number per 100 m3) ± standard error at 
each of the four tide stages.  Mean concentrations were log-transformed for statistical 
analysis.  SE is slack before ebb tide, E is ebbing tide, SF is slack before flood tide, and F 
is flooding tide.  Letters above bars are Tukey rankings indicating significance.  Bars that 
share a letter are not significantly different.   
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Figure 2.11.  Annual mean larval Atlantic menhaden concentrations (number per 100 m3) 
± standard errors for day and night collections.  Mean concentrations were log-
transformed for statistical analysis.  Letters above bars are Tukey rankings indicating 
significance.  Bars that share a letter are not significantly different.   
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Figure 2.12.  Three-year comparison of larval concentrations (solid line) at the 
Chesapeake Bay mouth with Bay-wide geometric mean index of young-of-the-year 
abundance  of juvenile menhaden (broken line) for the years 1) 2005-06, 2) 2006-07, and 
3) 2007-08.  YOY geometric mean values were taken from MD DNR juvenile index 
seine survey data (http://dnr.maryland.gov/fisheries/juvindex/index.asp) based on mean 
catches from three summer surveys.   
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Chapter 3: Inter-annual variability in growth, hatch-dates, and feeding dynamics of 

late-stage Atlantic menhaden larvae  

 

Abstract   

 

A three-year sampling survey was conducted at the mouth of the Chesapeake Bay to 

evaluate ingress of Atlantic menhaden larvae and to document their ages, hatch dates and 

growth rates. Otolith microstructure analysis was conducted on ingressing larvae to 

provide estimates of ages (and transport time), hatch-date distributions, and larval-stage 

growth rates. Ingressing larvae were hatched from September to March and > 90% of 

larvae were hatched prior to 15 December during each of the three years. The clear 

progression of modal hatch dates by cruise month indicated that a new pool of larvae 

ingressing from offshore was being sampled during each cruise. The overall mean age-at-

ingress was 47 days post-hatch and ranged from 9-96 days during the three years. The 

mean age-at-ingress was significantly older in 2006-07 (50 days post-hatch) compared to 

2005-06 (44 days post-hatch) and 2007-08 (46 days post-hatch). Mean growth rate was 

fastest in 2006-07 (0.57 mm/day) compared to 2005-06 and 2007-08 (0.52 mm/day in 

these years). A Laird-Gompertz growth model indicated that larvae grew fastest from 21-

30 days post-hatch in each year.  Based on a shift in allometric growth, larvae were 

judged to begin metamorphosis at a mean length of 27.69 mm. Copepods were the 

dominant prey consumed by ingressing larvae but other taxa, including barnacle nauplii 

and cladocerans, were important.  Feeding incidence and success were higher in 2006-07 

than in 2005-06 and 2007-08.  



 82

 

Introduction 

 

 The Atlantic menhaden Brevoortia tyrannus is distributed from the Canadian 

maritimes to Florida.  It is among the most abundant fishes in coastal embayments, 

estuaries, and neritic coastal habitat and supports a major fishery in the mid-Atlantic 

region (MDSG 2009).  Spawning by Atlantic menhaden has been recorded in every 

month of the year at some locations along the Atlantic coast (Higham and Nicholson 

1964).  On the mid-Atlantic coast, eggs have been collected from May through 

November and in January (Berrien and Sibunka 1999).  Adult menhaden migrate 

northward in the spring and southward in the fall (Dryfoos et al. 1973; Nicholson 1978).  

They spawn in the mid-Atlantic primarily from August through January with a peak in 

the September through November period (Berrien and Sibunka 1999).  From January 

through early March, intensive spawning is mostly concentrated off the Carolinas, south 

of Cape Hatteras (Higham and Nicholson 1964; Judy and Lewis 1983).   

Most menhaden larvae hatch in the coastal ocean and are subsequently 

transported shoreward to embayments and estuaries.  Little is known about the process of 

dispersal and transport.  Larvae have been collected up to 40-miles offshore, providing 

evidence that a considerable fraction of spawning occurs at offshore locations 

(Massmann et al. 1962).  Massmann et al. also noted a progressive decrease in size of 

larvae with distance from shore.  Atlantic menhaden collected upon entry to estuaries 

usually are late-larval stages.  Transport from the offshore environment may be quite 

rapid (Warlen 1992, 1994; Warlen et al. 2002; Light and Able 2003).  Warlen (1992) 
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suggested, based on estimated ages of larvae collected at incremental distances offshore 

from North Carolina, that dispersal of larvae is biphasic, estimating that shoreward 

transport is initially rapid at approximately 80 km in 30 days (2.7 km/day), but then 

slower at about 20 km in the next 20 days (1.0 km/day).  Warlen postulated that larvae 

accumulate near estuaries and embayments just prior to entry.   

 The paucity of age and growth research on early life stages of Atlantic menhaden 

is an impediment to relating hatch dates and locations to transport times to Chesapeake 

Bay.  Analysis of otolith-increment microstructure has been used to estimate age and 

growth rates of Atlantic menhaden larvae (Maillet and Checkley 1990; Warlen 1992, 

1994; Warlen et al. 2002; Light and Able 2003).  Increments in otoliths are deposited at a 

rate of one per day (Maillet and Checkley 1990; Warlen 1992).  Based on otolith-

estimated ages, spawning and hatch dates have been back-calculated (Warlen 1994) to 

determine the relative contributions of temporal spawning events to ingress of larvae to a 

North Carolina estuary.  Several surveys have collected larval Atlantic menhaden near 

the mouth or within the Chesapeake Bay (Hildebrand and Schroeder 1928; Pearson 1941; 

Massmann et al. 1954, 1962; Olney and Boehlert 1988; Hare et al. 2005; my Chapter 2) 

but research on age and growth of larvae is lacking.  Most research on age and growth of 

larval Atlantic menhaden has been conducted on larvae from waters off North Carolina 

and Delaware.  Warlen (1992) found that ages of larvae at ingress to estuaries are not 

only indicators of hatch dates, but potentially of transport rates and distance of spawning 

from shore.   

Growth and growth patterns of early life stages of Atlantic menhaden have been 

described (Lewis et al. 1972; Powell and Phonlor 1986; Maillet and Checkley 1990, 
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1991; Warlen 1992).  Based on otolith-aged larvae and a fitted growth model Warlen 

(1992) estimated that Atlantic menhaden larvae collected at ingress to a North Carolina 

estuary grew at average rates of 0.47 mm/day for ages 1 to 20 days, 0.36 mm/day for ages 

21 to 40 days, and 0.18 mm/day for ages 41 to 60 days old.  Maillet and Checkley (1990, 

1991) reported a mean growth rate of 0.48 mm/day for laboratory-reared Atlantic 

menhaden larvae from 0 to 50 days old in one study and 0.37 mm/day for 13 to 20 day-

old larvae in a second study.   

Lewis et al. (1972) described ontogeny and growth of early life stages of Atlantic 

menhaden, and recognized three growth stanzas.  The first stanza was characterized as 

larval growth and encompassed the period from hatch (3.6 mm total length) to the 

attainment of 30 mm total length (TL).  The second stanza characterized growth during 

the pre-juvenile, metamorphosing stage from 30 mm to attainment of full juvenile 

characteristics (38 mm TL).  Ontogenetic development from newly-hatched larva to the 

juvenile stage has been estimated to be 38 to 40 days post-hatch based on alimentary tract 

length and morphology (June and Carlson 1971; Lewis et al. 1972).   

There are few reports of feeding by Atlantic menhaden larvae in the sea and no 

evaluation of feeding with respect to sizes or growth rates.  Laboratory research has 

indicated that larval menhaden begin feeding at four days post-hatch (Powell and Phonlor 

1986; Lippson 1991).  Larval-stage menhaden are active predators on zooplankton (June 

and Carlson 1971).  June and Carlson (1971) reported gut contents of larval Atlantic 

menhaden from 19 to 34 mm fork length (FL) collected at the entrance to Delaware Bay.  

Fifty-nine percent of the larvae had empty alimentary tracts.  Copepods comprised 99% 

of the diets of those larvae and, of the identifiable copepods, 19% by number were 
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Centropages spp.  Laboratory-reared, late-stage larvae and pre-juvenile menhaden had 

fed mostly on Acartia spp. copepods (June and Carlson 1971).  The dominant prey of 

Atlantic menhaden larvae collected from the Newport River estuary, North Carolina, was 

copepods, which were reported to comprise 99% by number of their diets (Kjelson et al. 

1975).  Of those copepods, 40% were Centropages spp., 30% were Acartia spp., and 22% 

were harpacticoid copepods.   

 In this Chapter I report on the ages and hatch dates of larval Atlantic menhaden 

collected at the mouth of Chesapeake Bay, their growth rates during the oceanic phase of 

the larval stage, and feeding of larvae collected at the Bay mouth.  Ages of Atlantic 

menhaden larvae at ingress were determined by analyzing otolith increment 

microstructure.  Variability in ages of larvae at ingress was compared for collections 

made during three spawning years (2005-06, 2006-07 and 2007-08).  Otolith-derived age 

estimates were used to back-calculate hatch- and spawn-date distributions.  Growth rates 

were estimated and compared among years and months.  Foods of menhaden larvae at the 

Chesapeake Bay mouth were identified and variability in feeding by larval menhaden was 

described, characterized, and compared among months and years.   

 I hypothesized that age at ingress would vary monthly and inter-annually,  

possibly in response to different environmental conditions experienced by menhaden 

larvae in the coastal ocean or with respect to variability in spawning times and locations.  

I predicted that mean daily growth rates would vary monthly and inter-annually, 

primarily in relation to variable temperatures in the late fall to winter period when most 

larvae ingress to the Bay (see Chapter 2).  Based on published reports on menhaden 

feeding, I predicted that copepods would be the most common prey of menhaden larvae 
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at the Chesapeake Bay mouth and that feeding success would vary among years and 

months.   

 

Methods   

 

Study area and Surveys 

Ingressing Atlantic menhaden larvae were collected at the mouth of the 

Chesapeake Bay.  The mouth is 18-km wide and extends south to north from Cape Henry 

to Fisherman’s Island, Virginia.  There are three shipping channels of different depths at 

the Bay mouth (Chapter 2, Figure 2.1).  The Chesapeake Channel is near the center of the 

Bay entrance and is 17.7-m deep.  The northernmost channel, the North Channel, is 14-m 

deep.  Between those two channels is a shallow flat, the Middle Grounds, with depths 

11.3 to 14.1 m (Valle-Levinson et al. 2001).  At the southern side of the Bay mouth is the 

Thimble Shoal Channel, with depths from 8.0 to 11.8 m (Valle-Levinson and Lwiza 

1998).   

 A sampling transect was designated across the Chesapeake Bay mouth, located 

approximately 1.5 km seaward of the Chesapeake Bay Bridge/Tunnel (Chapter 2, Figure 

2.1).  Four stations were sampled on the designated transect in December 2005.  Five 

fixed stations were designated and sampled on the 17 remaining survey cruises during the 

three-year study.   

 A total of 18 survey cruises was conducted in the December 2005 to April 2008 

period (Chapter 2, Table 2.1).  Cruises were conducted from November to April, the 

season when peak larval ingress was expected to occur.  All except two of the cruises 
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were on the University of Maryland Center for Environmental Science’s (UMCES) 20.0-

m research vessel, R/V Aquarius.  The remaining two cruises were on the University of 

Delaware’s 44.5-m research vessel, RV Hugh Sharp.   

 Ichthyoplankton and zooplankton samples were collected at each station on the 

RV Aquarius cruises with a 1-m2 mouth-opening Tucker trawl equipped with 280-μm 

mesh nets.  A Tucker trawl, equipped with 1-mm mesh nets, was used for the two cruises 

onboard the R/V Hugh Sharp.  The Tucker trawl had two nets.  Flowmeters were 

mounted in the mouths of each net to allow calculation of volume filtered.  The 280-μm 

mesh nets collected fish larvae as well as mesozooplankton in the size range eaten by 

larval menhaden.  The Tucker trawl with 1-mm meshes captured ingressing menhaden 

larvae, which are usually > 20-mm total length, but did not sample small ichthyoplankton 

or mesozooplankton.     

In each deployment of the Tucker trawl, one net was fished obliquely from near-

bottom to the pycnocline and the second was fished from the pycnocline to surface.  On 

most deployments, tow durations for each net were four minutes (mean volume filtered = 

216.31 m3 ± 60.39 se).  At several stations during the February 2007 cruise, tows were 

extended to six minutes to increase numbers of larval menhaden in catches (mean volume 

filtered = 463.96 m3 ± 14.32 se).  On each cruise, a station was sampled at least twice and 

up to four times a day to encompass two photic periods (night and day) and a range of 

tide stages.  Samples were preserved in 100% ethanol.    
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Hydrography   

 Depth profiles of hydrographic conditions were obtained at each station using a 

CTD (conductivity, temperature, and depth).  The CTD recorded temperature, salinity, 

chlorophyll and dissolved oxygen profiles at each station on each cruise.  On occasions 

when the CTD was not available- - (Days 2 and 3 in the March 2007cruise, all stations in 

the April 2007 cruise, and one station in the November 2007 cruise) a YSI sonde was 

used to record temperature and salinity at 1-m depth intervals.  Tide stages and predicted 

water current directions and velocities were obtained from tide charts using the Capn 

Voyager software (Star Technologies) Tides 32.  The tide stage at the time each station 

was sampled was recorded.  

 Mean values of temperature and salinity over the entire water column were 

calculated for each station occupation.  A nested Analysis of Variance (ANOVA) was 

used to test for inter-annual and among-months differences in mean temperature and 

salinity at the Bay mouth.  Tukey’s Honestly Significant Difference (HSD) multiple 

comparisons test was used to discriminate significant differences among mean 

temperatures and salinities.   

 

Laboratory Procedures   

 Ichthyoplankton and zooplankton samples were processed in the laboratory.  

Menhaden larvae were removed from the plankton samples.  A total of 9,840 menhaden 

larvae were collected in the three-year survey (Chapter 2, Table 2.1).  Subsamples of 

larvae were analyzed.  For samples with high numbers of larvae, a random sample of 100 

larvae was measured to represent the length distribution sampled on a cruise.  For aging 
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and feeding analyses, up to five larvae from the above-pycnocline sample and five from 

the bottom-pycnocline sample were selected if sufficient larvae were available.  All 

larvae for feeding and aging analyses were measured to the nearest 0.1 mm prior to 

dissection.  For the aging and feeding analyses, totals of 251, 240, and 243 larvae were 

analyzed from 2005-06, 2006-07, and 2007-08 collections, respectively.   

 

Foods and Feeding 

 Gut contents of larvae were examined.  Under 20X magnification and using a 

fine-tipped wire probe, the entire gut was removed from the body of a larva.  The buccal 

cavity and anterior portion of the digestive tract also were examined for possible prey.  

All prey items were enumerated and identified, and then preserved in 100% ethanol.   

 Categories of prey that were analyzed included: copepods, copepod nauplii, 

cladocerans, barnacle nauplii, bivalve larvae, ostracods, decapods, polychaetes, tunicate 

larvae, metatrochophores, and digested material.  The copepod category was further 

subdivided into the genera: Centropages, Acartia, Temora, Caligus, and Labidocera.  

Those copepods were not identified to the species level but likely species were: 

Centropages typicus (Van Engle and Tan 1965), Acartia tonsa and A. clausi (Heinle 

1972), Temora longicornis and T. turbinata (Van Engle and Tan 1965), Caligus 

unidentified (Chesapeake Bay Program 2007), and Labidocera aestiva (Van Engle and 

Tan 1965).   
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Otolith Preparation 

 The sagittal otoliths were removed from the auditory capsules of menhaden larvae 

using a modification of methods described by Secor et al. (1992) and Maillet and 

Checkley (1990).  Both left and right saggitae were removed and mounted on microscope 

slides.  They were fixed onto the slides using clear nail polish, one otolith with cusp side 

up and the other with cusp side down.  Otoliths were examined under a compound 

microscope at 600x magnification.  Images of otoliths were taken and saved for each 

otolith pair.  The best of each pair was used to count daily increments.  Early in the 

analysis, a second reader examined and counted increments on a small subsample of 10 

randomly selected otoliths; agreement in counts was 100 percent, indicating that a single 

reader’s counts could be accepted.     

 

Zooplankton Analyses   

 Aliquots of zooplankton from Tucker-trawl samples were identified and 

concentrations were estimated.  Samples from the RV Hugh Sharp cruises in early 

November 2007 and February 2008 were not included in the analyses because they were 

collected using 1-mm mesh nets that did not retain zooplankton of sizes consumed by 

menhaden larvae.  Each Tucker-trawl sample was brought to a standard volume of 1 liter.  

Three 1-ml aliquots were examined to identify and quantify zooplankton numbers.  The 

mean count for the three aliquots was accepted to estimate zooplankton concentrations.  

For aliquots that qualitatively were judged to have very high concentrations, i.e., >> 100 

zooplankton per 1 ml, the standard 1-liter sample was split and the half sample then 
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diluted to 1-liter volume before 1-ml aliquots were drawn and examined.  Zooplankton in 

each 1-ml aliquot were identified and enumerated.    

 Zooplankton concentrations were estimated from the 1-ml aliquots.  The mean 

number of zooplankton in a 1-ml aliquot was multiplied by the standardized sample 

volume to obtain the total number of zooplankton in the sample.  The total number of 

zooplankton in the sample was divided by the volume of water filtered by the Tucker-

trawl tow for that sample to obtain the zooplankton concentration (number per cubic 

meter).  Concentrations of individual zooplankton taxa also were estimated.  Mean 

zooplankton concentrations were compared among cruises (in effect months) to detect 

seasonal trends and among years using nested ANOVA followed by Tukey HSD multiple 

comparisons test.   

 

Ages, hatch-dates, and growth   

Ages and Lengths  

 Age in days from hatch was estimated from the daily increment counts of each 

otolith.  Maillet and Checkley (1990) had determined that the time from hatch to 

formation of the first increment is 3 to 4 days.  Accordingly,  

Age from Hatch = Total increments + 3 days 

Mean ages of otolith-aged larvae were compared to determine if they differed from 

cruise-to-cruise (i.e., seasonal differences) and among the three years in a nested 

ANOVA.  Tukey HSD was used to discriminate significant differences in mean ages 

among cruises and years.   
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 The protocol for measuring menhaden larvae was to measure total lengths (TL) of 

all larvae in samples containing < 100 larvae and a random subsample of 100 in samples 

with > 100 larvae.  Lengths of unmeasured larvae in samples that had > 100 menhaden 

larvae were estimated from the length-frequency distributions of measured larvae and 

proportional assignment of lengths to unmeasured larvae.  The proportion of larvae in 

each 1-mm length bin was determined for each sample.  Mean lengths from only the 

measured larvae were tested and compared among monthly cruises and among the three 

years in a nested ANOVA followed by Tukey HSD.   

 Larvae that were not aged from otolith increments were assigned ages from an 

age-length key that was developed using a protocol described by Isermann and Knight 

(2005).  The software developed by Isermann and Knight (2005) is in the SAS-language 

that was translated by Ogle, Derek H (http://www.rforge.net/FSA) to the R-language.  

The age-length key allowed assignment of an estimated age to all larvae in the 

collections.   

Hatch-Dates    

 Hatch dates were back-calculated directly for otolith-aged larvae and estimated 

for larvae that were not aged from the age-length key.  Back-calculations of hatch dates 

were obtained by subtracting the age of larvae in days from the date of capture and 

adding 3 days:   

Hatch date = Date of capture – (Age in days + 3 days)   

A hatch-date frequency distribution was derived for larvae collected in each 

cruise.  These unadjusted distributions were adjusted to provide an estimate of hatch-date 

distributions for each year.   
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The age-frequency distributions of larvae were adjusted by accounting for effects 

of natural mortality on the observed age distribution of larvae in collections and by 

accounting for differential sampling effort among cruises.  A conservative estimate of 

natural mortality rate of menhaden larvae, M = 0.15-d-1, was assigned based on reported 

larval natural mortality rates of clupeoid larvae at temperatures in the range experienced 

by menhaden larvae (Houde and Zastrow 1993).  This mortality rate was applied to the 

unadjusted hatch-date frequencies of larvae in all cruises to reconstruct the probable 

abundances at hatch in each of the three years.  Hatch-date frequencies were adjusted 

further by accounting for differences in sampling effort among cruises.  This was done by 

dividing the total number of larvae in each hatch date bin within a cruise by the number 

of samples taken during a cruise to standardize the distributions.  Finally, an adjustment 

was made on the hatch-date frequencies to account for differences in number of days 

included in cruises and days represented by each cruise.  This was accomplished by 

multiplying hatch-date frequencies for each individual cruise by the extrapolated number 

of days that each cruise represents.  The adjusted hatch-date frequency distributions were 

then used to determine relative cumulative frequencies of larval hatch dates in each year.  

This procedure allowed determination of the cumulative monthly percent contributions of 

ingressing larvae at the Chesapeake Bay mouth.   

 

Growth    

 Growth of menhaden larvae was modeled by fitting length-at-age data of otolith-

aged larvae to a Laird-Gompertz model (Maillet and Checkley 1991; Warlen 1992; 

Piscart et al. 2003).  Laird-Gompertz models were fit to the length-on-age relationships 
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for larvae in each year.  The models were forced through the intercept length = 3.6 mm 

TL, the length of menhaden at hatch (= age zero) to insure that it was accurately 

represented in the models.  The model is:   

Lt = L0ek(1-e-at) 

where Lt is length at age t days, L0 is length-at-hatch- -set to 3.6 mm in all model fits, k is 

the rate of decay of the initial instantaneous growth rate, and a is a dimensionless 

parameter.  Mean growth rates were derived for larvae at 10-day age intervals from the 

fitted models in each year.   

 The Laird-Gompertz model allowed hindcasting of estimated growth-rates to ages 

when menhaden larvae were offshore and not sampled, before they had arrived at the 

Chesapeake Bay mouth.  Warlen (1994) used a similar method to determine larval growth 

patterns and rates.  Coefficients (k) were compared among years using pairwise t-tests, 

based on the parameter estimates and variances for each year (Bolz and Lough 1983; 

Quinn and Deriso 1999).   

 

Weight-length   

 The weight-length relationship of menhaden larvae from the mouth of 

Chesapeake Bay was determined.  For all larvae that were aged, lengths and weights were 

obtained for this analysis.  Weights were obtained using a microbalance.  Based on a 

weight-length relationship, Lewis et al. (1972) characterized the allometric changes 

during ontogeny of early-life stages of Atlantic menhaden and identified three stages that 

they referred to as stanzas.  Larvae from my research fall into their larval and pre-juvenile 

stanzas.  Because there was a noted shift in the relationship between weight and length 
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during ontogeny, I fit a piecewise linear regression to the log-log weight-on-length 

relationship of menhaden larvae to evaluate the shift.  I used a technique for breakpoint 

estimation in piece-wise linear regression using iteration (Ryan and Porth 2007) based on 

the power model formulated from the log-log weight-on-length relationship.  Regression 

relationships were obtained for data from the three years combined and also for data from 

each individual year.   

 

Foods and Feeding      

 Prey incidence, the percent of menhaden larvae that contained at least one prey 

item in their guts, was calculated by cruise (i.e., month) and year.  An r x 2 test of 

independence was used to test for differences in the proportion of larvae that contained at 

least one prey item in their gut among the three years and among months in each year.   

 In an additional analysis of prey incidence, a logistic regression was used to test 

the probability of a prey item occurring in a larval gut at larval total lengths, in a 

procedure similar to that used by Wheeler and Allen (2003).  This approach tests for 

differences in the rate at which the probability of occurrence of a prey item in the gut 

changes during growth of larvae among years.  The binary response variable, presence or 

absence of prey, was tested against total length of menhaden larvae, years, and the 

interaction of total length with years as predictors.  The model used in the analysis was:   

Logit(p) = Β0 + Β1L + Β2year + Β3year*L, 

where logit(p) is the logistic probability of prey occurring in a larval gut, Β0 is the 

intercept, L is total length in mm, year is year of the three-year study, and year*L is the 

interaction between  length and year.  The significance of individual model terms was 
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tested with a Wald test using robust standard errors for validation of inclusion of each 

model term (Croux et al. 2003).  A type III Chi-square Wald test was used to test the 

performance of the full model, with all model terms included, in comparison to the null 

model which includes only estimates of the intercept and not the explanatory terms 

(Hausman 1978).   

 The success of feeding was analyzed by evaluating total number of prey items 

occurring in larval menhaden digestive tracts.  This analysis was conducted using a quasi-

Poisson regression analysis with independent variables larval total length and year.  This 

method was selected because the distribution of total number of prey per larval gut had a 

Poisson-like distribution that was overdispersed.  A high proportion of larvae had zero 

prey in their guts.  The quasi-Poisson model was selected rather than a negative binomial 

model based on the argument that it generally handles overdispersed data more efficiently 

(Hoef and Boveng 2007).  Based on a preliminary run of the quasi-Poisson regression 

analysis, the interaction of larva length and years on the number of prey items in guts was 

found to be not significant and therefore was not included in the final analyses.  The 

resulting model tests for differences in total number of prey per larval gut among years 

and larval length.  The model used in the final analysis is:   

log(P) = Β0 + Β1L + Β2Y, 

where log(P) is the logarithm response of the total number of prey per gut in relationship  

to a linear combination of the predictors, Β0 the intercept, L total length (mm) of larvae, 

and Y the year designated as a dummy variable with the levels -1, 0, and 1.  This model 

describes number of prey per gut.  The significance of the model terms was tested using a 

Wald test on the robust standard errors for validation of inclusion of the model terms in 
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the model (Croux et al. 2003).  A type III Chi-square Wald test was then used to test the 

performance of the full model, with all model terms included, compared to the null model 

which includes only an estimate of the intercept, excluding other model terms (Hausman 

1978).   

 

 Prey Selection 

 The proportions of types of prey in larval menhaden diets were calculated.  The 

four most common prey in diets were analyzed to determine if menhaden larvae had 

shown preference for them as prey.  The four most common prey groups were copepods, 

barnacle nauplii, cladocerans, and bivalve larvae.  Proportions of these four prey groups 

were evaluated and compared among cruises to determine if there was a seasonal trend 

and among years to determine if there were inter-annual differences in prey selection.   

 A prey preference index was used to determine if menhaden larvae selected prey 

types. The proportions of zooplankton concentrations were calculated for zooplankton 

prey groups that were important larval prey.  For copepods, all taxa of copepods were 

pooled in this analysis.  The Strauss (1979) index of prey selectivity was used to compare 

relative proportions of zooplankton by group in larval menhaden diets to the relative 

proportions of those same zooplankton available at the Chesapeake Bay mouth:   

S = ri – pi,   

where ri is the proportion of prey i in the larval guts and pi is the proportion of prey type i 

available in the environment.  The calculated index, S, can range from -1.0 to +1.0.  

Positive index values from this analysis indicate selection for zooplankton type i; zero 

values indicate no selection for or against a prey type; and negative values indicate 



 98

avoidance.  Variance estimates were calculated using the method described by Strauss 

(1982), followed by t-tests to determine if index values, S, differed significantly from 

zero.   

 The possible relationship between zooplankton concentrations and menhaden 

larvae concentrations in samples was tested by calculating Pearson correlation 

coefficients.  This relationship was tested in each of the three years   

 

Results   

 

Hydrography at the Chesapeake Bay Mouth   

 Mean water-column temperatures at the Bay mouth during cruises ranged from 

4.53oC to 14.29oC over the three-year study (Chapter 2, Table 2.2).  The mean 

temperatures differed significantly among years (nested ANOVA, p < 0.001).  The mean 

water temperature was lowest in 2005-06 (x̄ = 8.25 oC ± 0.16 se), intermediate in 2006-07 

(x̄ = 9.65 oC ± 0.19 se), and highest in 2007-08 (x̄ = 10.31 oC ± 0.15 se) (Chapter 2, Table 

2.2).  In each of the years, the within-year monthly (i.e., among cruises) mean water 

temperatures also differed significantly (nested ANOVA, p < 0.001).  Only in January 

and February 2008 were temperatures not significantly different.   

Mean water-column salinity at the Bay mouth ranged from 22.98 to 29.47 among 

cruises (Table 2.2).  The mean salinity was lowest in 2005-06 (x̄ = 25.60 ± 0.25 se), 

intermediate in 2006-07 (x̄ = 26.35 ± 0.16 se), and highest in 2007-08 (x̄ = 27.68 ± 0.12 

se).  Mean salinity differed significantly among the three years (nested ANOVA, p < 

0.001) and among months within each year (p < 0.001).  The mean salinity in 2005-06 
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was significantly lower than in 2006-07 (p = 0.004) and 2007-08 (p < 0.001).  Mean 

salinity in 2006-07 was significantly lower than the mean salinity in 2007-08 (p < 0.001).   

 

Catches of Larvae 

 A total of 9,840 larvae was collected at the Chesapeake Bay mouth (Chapter 2, 

Table 2.1).  Catches and concentrations of larvae were highest in 2007-08 and lowest in 

2006-07 (Chapter 2, Figure 2.2).  The highest catches occurred at different temperatures 

during the three years.  In 2005-06, the highest catches occurred at temperatures between 

5 and 10 oC (Figure 2.2a).  In 2006-07, highest catches were at temperatures < 6 oC 

(Figure 2.2b) while in 2007-08 highest catches were made at > 9 oC (Figure 2.2c).   

 

Ages, Lengths, and Hatch Dates   

Lengths   

 The length-frequency distributions of menhaden larvae were similar among years 

(Chapter 2, Figure 2.3).  In each year the modal length was 27.00 mm TL.  The mean 

lengths of larval menhaden differed significantly among the three years (p < 0.001).  The 

mean length in 2005-06 (x̄ = 26.88 mm ± 0.12 se) was significantly smaller than in the 

other years; mean lengths did not differ between 2006-07 (x̄ = 27.94 mm ± 0.10 se) and 

2007-08 (x̄ = 28.13 mm ± 0.05 se) (ANOVA and Tukey’s HSD, p = 0.178) (Chapter 2, 

Table 2.3).   

Mean lengths of menhaden larvae differed significantly among cruises within 

each year (p < 0.001) (Table 2.4).  In each year, mean lengths were significantly smaller 
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in the first cruise (November or December) than in other months.  No other seasonal 

patterns in mean lengths were recorded.   

Length-frequency distributions of ingressing larval menhaden were very similar 

among cruises (Chapter 2, Figure 2.4).  Virtually all larvae were in the 15 to 35-mm TL 

range and the overall range was from 6 to 40 mm TL.  There was a clear bimodality in 

the length-frequency distribution of larvae collected during the December 2005 cruise, 

but the distributions appeared to be uni-modal in remaining cruises.  The length 

distributions in November 2006 and November 2007 tended to be skewed toward smaller 

lengths.   

 

Ages   

 The mean age-at-ingress, based on otolith-aged larvae, was 47 days post-hatch.  

Mean age differed significantly among years (nested ANOVA, p < 0.001).  The oldest 

mean age-at-ingress was observed in 2006-07 (x̄ = 49.85 d ± 0.86 se).  It was 

significantly older than mean age in 2005-06 (x̄ = 44.20 d ± 0.66 se) (p < 0.001) and in 

2007-08 (x̄ = 46.03 d ± 0.56 se) (p < 0.001).  Mean ages in 2005-06 and 2007-08 did not 

differ (p = 0.092) (Table 3.1).   

The mean age of menhaden larvae differed significantly among cruises (i.e., 

months) within each year (Table 3.2; Figure 3.1).  In 2005-06, mean age was significantly 

lower in December (x̄ = 41.10 d ± 1.68 se) than in all other cruises except March (x̄ = 

40.75 d ± 3.01 se) when only four larvae were available to be aged (Table 3.2).  In 2006-

07, the mean age of larvae in November (x̄ = 30.93-d ± 0.73 se) was > 10 d younger than 

the mean age in any other cruise.  The oldest mean age in 2006-07 was observed in 
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January (x̄ = 63.00 d ± 4.01 se) when only 10 larvae were available for aging.  That value 

was the oldest monthly mean age at ingress observed in the three-year program.  Unlike 

2005-06 and 2006-07, lowest mean ages in 2007-08 were not observed in November or 

December, but in February (x̄ = 36.17 d ± 1.46 se) and March (x̄ = 42.95 d ± 1.16 se) 

(Table 3.2; Figure 3.1).   

 

Hatch dates  

 The earliest back-calculated hatch date of menhaden larvae in 2005-06 was on 7 

October 2005 and the latest was on 9 March 2006.  In 2006-07, hatch dates ranged from, 

earliest on 23 September 2006 to latest on 17 March 2007.   In 2007-08, the earliest hatch 

date was 24 September 2007 and the latest 03 March 2008 (Figure 3.2).  In 2005-06, the 

highest frequency of hatch dates occurred in November 2005.  These larvae were 

collected during the January 2006 cruise.  The highest frequency of hatch dates in 2006-

07 occurred over the period from mid-November through mid-December 2006.  Larvae 

hatched in that period were mostly collected during the February 2007 cruise.  In 2007-

08, the most frequent hatch dates occurred earlier than in other years, with highest 

frequencies observed from October through mid-November.  Larvae hatched in that 

period were collected during the November and December 2007 cruises.  The near 

absence of larvae hatched in December 2007 is notable (Figure 3.2).   

 Most ingressing larvae in the three-year program had hatch dates that occurred 

before January.  The percentage of larvae hatched by December 15 was 97% in 2005-06, 

98% in 2006-07, and 91% in 2007-08.  The proportion of larvae hatched by December 15 
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in 2007-08 was somewhat lower because of a relatively large contribution of larvae 

hatched in January-February 2008.   

 Also common among the three years was a clear progression of the modal hatch 

dates of larvae by cruise month, indicating that a new pool of ingressing larvae from 

offshore was being sampled during each cruise (Figure 3.2).  There was little to no 

overlap in the hatch-date distributions of larvae collected on different cruises.   

 

Growth Rates   

Growth Rates   

 The Laird-Gompertz model provided excellent fits to the length-on-age 

relationships of larval menhaden in each of the three years (Figure 3.3).  Growth rates of 

menhaden larvae were highest in the 21-30-day age interval in each year (Table 3.3).  

Growth rates in the 21 - 30 day interval were 0.56 mm/day in 2005-06, 0.61 mm/day in 

2006-07, and 0.56 mm/day in 2007-08.  After age 40 days, growth rates declined and 

slowest growth rates were observed in the 70 - 80-day age interval.  Growth rates in that 

10-day age interval were 0.37 mm/day in 2005-06, 0.36 mm/day in 2006-07, and 0.39 

mm day in 2007-08.  The decay rate coefficient (k parameter in the Laird-Gompertz 

models) was significantly higher in 2006-07 (k = 2.28) than in 2007-08 (k = 2.16) (t-test, 

p < 0.001).  The k parameter in 2005-06 (k = 2.21) was not significantly different from k 

in the other two years.   
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Weight-Length Relationship   

 For all three years combined, the piece-wise power model explained 95 percent of 

the variability in the weight-on-length relationship compared to only 88 percent 

explained by a simple power model (Figure 3.4 a-b).  The piece-wise model estimated a 

breakpoint, c, at 27.69 mm TL.  The allometric power coefficient at lengths < c is b1 = 

5.06 and at lengths > c it is b2 = 5.46.  These coefficients were comparatively higher than 

the allometric coefficient in the simple power regression model (b = 4.64) (Figure 3.4a).   

The break points, c, in the weight-length relationships for each year were 29.00 

mm TL in 2005-06, 27.56 mm TL in 2006-07, and 34.23 mm TL in 2007-08.  In 2005-06 

the allometric coefficient is b1 = 4.89 for lengths < c and b2 = 5.94 for lengths > c.  In 

2006-07 b1 = 4.83 for lengths < c and b2 = 5.63 for lengths > c.  In 2007-08, b1 = 4.68 for 

lengths < c and b2 = 4.71 for lengths > c.   

 

Larval Menhaden Feeding   

Prey Types   

 Ten prey types were identified in guts of Atlantic menhaden larvae collected at 

the Chesapeake Bay mouth (Table 3.4).  The most common prey types were copepods, 

cladocerans, barnacle nauplii, and bivalve larvae.  The genera of copepods in the larval 

diet were similar among years, with Acartia spp. and Centropages spp. dominating.  In 

2005-06, 59.8 percent of the copepods were Acartia, 39.1 percent were Centropages, and 

1.1 percent was the parasitic genus Caligus.  Caligus parasites were found only in the 

guts of and not attached to the body of menhaden larvae.  In 2006-07, 41.3 percent of the 

copepods were Acartia, 56.4 percent were Centropages, 1.1 percent were Temora, and 
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1.1 percent were Caligus.  In 2007-08, 54.9 percent of the copepods were Acartia, 44.4 

percent were Centropages, and 0.7 percent were Temora.  Cladocerans in the diets were 

mostly of the species Podon polyphemoides and Evadne tergestina.  Barnacle nauplii in 

diets were Balanus spp., most likely Balanus vestnusus.   

 In each of the three years only two prey types contributed ≥ 70 percent by number 

to the larval menhaden diets (Figure 3.5 a-c).  In all years, the dominant four prey were 

copepods, cladocerans, barnacle nauplii, and bivalve larvae.  Copepods were the principal 

prey in each year (Figure 3.6 a-c).  The mean number of copepods per larval gut was 0.38 

(± 0.05 se) in 2005-06, 0.97 (± 0.13 se) in 2006-07, and 0.71 ± (0.11 se) in 2007-08.  The 

mean number of copepods per gut differed among years (p < 0.001).  An ANOVA 

followed by Tukey’s test indicated that the mean number of copepods per gut in 2005-06 

was significantly lower than the mean number in 2006-07 (p < 0.001) and marginally 

lower than in 2007-08 (p = 0.047).  Mean number of copepods per gut did not differ in 

2006-07 and 2007-08 (p = 0.185).  

 In 2005-06, 46.3 percent of the larval menhaden diet was copepods, 32.5 percent 

was barnacle nauplii, 13.8 percent was cladocerans, and 1.1 percent was bivalve larvae 

(Table 3.5).  In 2006-07, copepods increased to 67.7 percent of the diet.  In that year, 

bivalve larvae also were more common in the larval diets (13.9%) and barnacle nauplii 

were less common (10.7%).  In 2007-08, 70.1 percent of the larval diet was copepods and 

14.2 percent was barnacle nauplii, while cladocerans and bivalve larvae were less 

important.  Monthly patterns observed in larval menhaden diets were consistent, with 

copepods dominating the diet during each month (Table 3.6; Figure 3.7 a-c).   
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Larval Feeding: Prey Incidence   

 Prey incidence in guts of menhaden larvae 1) averaged 55% over all cruises in the 

three-year program, 2) ranged from 7% to 100% among cruises, and 3) was highest on 

average (77%) in 2006-07 (Table 3.7).  There was monthly variability in prey incidence.  

For example, in April 2006, 67 percent of the larvae had at least one prey in their guts 

compared to only 25 percent in March 2006.  Prey incidence during 2006-07 was 

consistently high among months, except for March 2007 when only 48 percent of the 

larvae had at least one prey in their guts.  The low average prey incidence in 2007-08 was 

attributable to the particularly low incidences in December (11%) and February (7%).  

The average incidence for the remaining months in 2007-08 was 56% 

The percentage of larvae with at least one prey occurrence relative to the number 

with empty guts differed significantly among years (Chi-square = 74.15: p < 0.001) 

(Table 3.8).  In 2005-06, no differences were detected in prey incidence among months 

(Chi-square = 3.57: p > 0.05) (Table 3.9a).  In 2006-07, there were significant among-

month differences (Chi-square = 35.66: p < 0.001) (Table 3.9b).  Prey incidences were 

highest in November 2006, December 2006, and January 2007 when nearly all larvae had 

prey in their guts (Table 3.9).  In 2007-08, the among-month differences in prey 

incidence also were significant (Chi-square = 46.56: p < 0.001) when incidences were 

lowest in December 2007 and in February (Table 3.9c).   

The probability of prey occurrence in the gut of a menhaden larva, derived from 

logistic regression (Table 3.10; Figure 3.8), increased with larval length (p < 0.001). The 

rate of increase in probability of prey occurrence in larval guts with respect to total length 
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was significantly faster in 2005-06 compared to 2006-07 (p = 0.001) and 2007-08 (p = 

0.007).   

 

Feeding Success: Number of prey per gut   

 Feeding success, defined as the number of prey per gut, increased with larval 

length and differed significantly among the three years as interpreted from the quasi-

Poisson regression (p < 0.001).  Mean numbers of prey per gut ranged from 1.12 in 2007-

08 to 2.25 in 2006-07.  Feeding success was significantly higher in 2006-07 than in 2005-

06 (p < 0.001) or 2007-08 (p < 0.001) (Figure 3.9) but judged to be similar in 2005-06 

and 2007-08 (p = 0.154).  Feeding success increased in relation to larval length for all 

years combined (p < 0.001), especially for > 30-mm larvae (Figure 3.10).  The number of 

prey per gut as a function of menhaden length was not tested for individual years because 

the interaction between length and years was not significant and therefore excluded from 

the model.   

 

Zooplankton Availability   

 Concentrations of mesozooplankton, the primary prey for menhaden larvae at the 

Bay mouth, differed significantly among years (p < 0.001) (Figure 3.11).  Mean total 

zooplankton concentrations at the Bay mouth did not differ significantly among years 

(ANOVA, p = 0.079) (Table 3.11).  In 2007-08, there were no data available in February 

to include in the estimate of mean concentration for that year.  

 Mean total zooplankton concentrations differed among cruise months (p < 0.001) 

(Table 3.12).  In 2005-06 and 2007-08, highest mean concentrations were in April, but in 
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2006-07 highest concentrations occurred in November. There was no clear pattern of 

seasonal variability in zooplankton concentrations (Table 3.12).   

 The most abundant zooplankton taxa at the mouth of the Chesapeake Bay were 

the copepods Acartia tonsa and Centropages typicus, the cladocerans Podon 

polyphemoides and Evadne tergestina, and barnacle nauplii that probably were Balanus 

vestnusus.  The mean concentrations for these taxa were similar among years (Figure 

3.12).  Copepods made up ≥ 70 percent of the zooplankton composition at the 

Chesapeake Bay mouth (Table 3.13).  Copepods constituted the dominant zooplankton 

taxa during each cruise month of the study (Table 3.14).   

 

Prey Selectivity   

 Larvae of Atlantic menhaden were not particularly selective with respect to 

feeding on any of the four most common prey types in their diet.  Strauss’s index values 

ranged from -0.24 to +0.12 during the three years (Table 3.15).  These index values did 

not differ significantly from zero (p ≥ 0.05).  Analyzing by cruise, the monthly Strauss’s 

index values ranged from -0.36 to +0.47.  Only two instances of significant selectivity 

were found (Table 3.16).  Cladocerans were positively selected in March 2006 (S = + 

0.47; p = 0.019) and copepods were positively selected in November 2006 (S = + 0.23; p 

= 0.049).  There was no correlation between zooplankton concentrations and menhaden 

larvae concentrations at the Bay mouth (r = -0.013).   
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Discussion   

 

Atlantic menhaden larvae hatch offshore and disperse to bays and estuaries on the 

North American east coast during the late-larval stage, approximately 6-8 weeks after 

being spawned.  In my collections at the Chesapeake Bay mouth, larvae ranged from 6.6 

to 40.0 mm TL, averaging 27.8 mm TL, and 46.7 days in age.  Variability in ocean 

conditions on the continental shelf was hypothesized to be a probable source of inter-

annual differences in sizes and growth rates of ingressing larvae.  The time that larvae are 

resident in the vicinity of the Bay mouth is not known, but the relatively uniform length 

range and the progression of hatch dates of larvae collected in the surveys indicate that 

larvae dispersing from offshore to the Bay mouth do not spend a lengthy period at the 

Bay mouth. Larvae at ingress have spent most of their lives in the offshore environment 

and thus were mostly subject to offshore conditions, which presumably were warmer 

temperatures and higher salinities, prior to ingress.   

The mean age at ingress into Chesapeake Bay for Atlantic menhaden larvae 

ranged from 31 to 63 days post-hatch in all months.  These ages at ingress are similar to 

age at ingress in North Carolilna and Delaware (Warlen 1992; Warlen et al. 2002) and 

also age at ingress of larval gulf menhaden Brevoortia patronus (Warlen 1988).  The 

mean age of ingressing larvae at the Chesapeake Bay mouth did not differ greatly among 

cruises or inter-annually.  The observed mean age was 14 days younger than mean age at 

estuarine recruitment into North Carolina estuaries (61 days) (Warlen 1992, 1994).  

Warlen et al. (2002) reported that age at ingress of menhaden larvae into Delaware Bay, 

another mid-Atlantic estuary, was on average 10 days younger than larvae ingressing into 
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North Carolina estuaries and thus it is similar to my estimated mean age at ingress, 46.7 

days, into Chesapeake Bay.  The difference in mean age at ingress between North 

Carolina and the Delaware-Chesapeake regions may be a consequence of differences in 

transport mechanisms and distances from spawning areas.  The Chesapeake Bay is 

located in the southern portion of the mid-Atlantic region and offshore spawning by 

menhaden in that region is thought to make substantial contributions to larvae that recruit 

into North Carolina estuaries, based primarily on interpretations from circulation models 

(Quinlan et al. 1999; Rice et al. 1999; Stegmann et al. 1999; Werner et al. 1999).  If true, 

menhaden larvae hatched in the mid-Atlantic Bight must disperse over greater distances 

to reach North Carolina estuaries than to Chesapeake Bay and this could partly account 

for the greater age at ingress observed in North Carolina.   

Although mean age of menhaden larvae at the Chesapeake Bay mouth differed 

among the three years of my research, the ages were remarkably similar, differing by 

only 6 days.  Larvae entering the Chesapeake Bay in 2006-07 were older than larvae 

entering during the other years.  Variability in transport times of larvae to Chesapeake 

Bay potentially can result from numerous causes, including variability in offshore 

circulation and variability in adult menhaden spawning migrations and locations.  Warlen 

et al. (2002) noted inter-annual differences in the mean age at ingress of Atlantic 

menhaden entering Beaufort Inlet, North Carolina, and Little Egg Inlet, New Jersey.  The 

mean age at ingress to Beaufort Inlet was 60.7 days in 1989-90, 58.6 days in 1990-91, 

and 69.3 days post-hatch in 1992-93.  Differences in mean age at ingress to the New 

Jersey inlet during the same years were less variable.  The mean ages in New Jersey were 
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54.3, 52.7, and 50.9 days post-hatch.  No attempt was made to explain causes of the 

observed variability (Warlen et al. 2002).   

There was no seasonal pattern or trends in ages of ingressing menhaden larvae 

sampled at the Chesapeake Bay mouth.  Ages of larval Atlantic menhaden ingressing into 

North Carolina estuaries increased seasonally (from December to March) from 41 to 79 

days post-hatch (Warlen 1992), suggesting a shift in transport conditions during the 

season.  Mean ages of menhaden larvae at the Chesapeake Bay mouth, however, ranged 

from 40 to50 days post-hatch in all months except for November 2006 (mean age = 31 d) 

and January 2007 (mean age = 63 d).  The seasonal pattern observed in North Carolina by 

Warlen (1992) may be unique to that region because of hydrographic patterns or possibly 

a seasonal shift in the source region of larvae that are dispersed to the Carolina coast if 

spawning shifts from the Mid-Atlantic to South Atlantic.  Alternatively, Warlen 

suggested that an increase in offshore flow in the late season could prolong transport 

time.   

The hatch-date frequencies in my analysis have been adjusted to account for 

cumulative mortality of larvae in the population before sampling.  A conservative 

estimate of mortality rate (0.15 d-1) was applied to all ages in the unadjusted frequency 

distributions of larvae.  Houde and Zastrow (1993) estimated the mean mortality rate of 

clupeiform larvae to be 0.179 d-1.  If the daily mortality of menhaden larvae were higher 

or lower than 0.15d-1, the frequency distributions of hatch dates will be biased, especially 

for derived dates of the oldest larvae in my samples.  Estimates of mortality of Atlantic 

menhaden larvae in the offshore environment are not available.  Although potentially 

biased, my hatch-date frequency distributions are better than frequencies calculated 
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without considering the cumulative effects of mortality.  Estimating mortality of larvae in 

the offshore environment is an important future research need.  Measures of offshore 

mortality, if undertaken, also should be age-specific to account for probable declines in 

the rate with age and size (Houde 1997).  

Hatch dates of Atlantic menhaden larvae at the Chesapeake Bay mouth ranged 

from late September to early March, indicating a protracted season of spawning that 

supplies recruits to the Bay.  Spawning by Atlantic menhaden in the mid-Atlantic occurs 

during the fall and moves southward, and is mostly south of Cape Hatteras, North 

Carolina, by December (Higham and Nicholson 1964; Judy and Lewis 1983; Berrien and 

Sibunka 1999).  Based on collections from the Marine Monitoring and Assessment and 

Prediction Program (MARMAP) (Berrien and Sibunka 1999), Stegmann et al. (1999) 

concluded that eggs of Atlantic menhaden are absent in the Mid-Atlantic region at 

temperatures < 12oC.  More than 90 percent of the menhaden larvae ingressing into 

Chesapeake Bay were hatched before mid-December in each of the three years.  Because 

menhaden larvae hatch ≤ 2 days after eggs are spawned (Kuntze and Radclife 1917), 

temperatures experienced by newly-hatched larvae must be similar to those at spawning.  

In each of the three years, surface water temperatures approximately 27 km offshore of 

Chesapeake Bay dropped below 12oC before mid December (Figure 3.13), suggesting 

that conditions had become unsuitable for spawning in this region.  Menhaden larvae in 

my collections with hatch dates after December were uncommon in 2005-06 and 2006-

07.  In 2007-08, larvae with hatch dates in December were absent but hatch dates were 

observed between January and late February 2008.   
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The observed hatch-date distribution in 2007-08 indicated potential bimodality in 

either spawning activity or a shift in the region of origin of the larvae.  Spawning by 

Atlantic menhaden in the Mid-Atlantic has been reported to be bimodal, with spawning 

occurring during a southward migration in the fall and again during a spring northward 

migration (Nicholson 1971; Judy and Lewis 1983).  The high number of menhaden larvae 

that ingressed into Chesapeake Bay during March 2008 had hatch dates from late January 

to late February 2008.  Based on larval and adult distributions, spawning is thought to 

concentrate in the South Atlantic Bight (SAB) during that period (Higham and Nicholson 

1964; Judy and Lewis 1983; Berrien and Sibunka 1999).  Temperatures in the SAB 

remain favorable for spawning in January and February and the SAB is a probable source 

of larvae recruiting into Chesapeake Bay.  Although the mechanisms that deliver 

menhaden larvae to the Mid-Atlantic from the SAB have not been fully explained, model 

simulations on time-independent, constant-wind fields during the spring (Quinlan et al. 

1999) suggested that a northward-flowing, nearshore current can potentially deliver 

southern-spawned larvae into mid-Atlantic estuaries.   

Peak hatch dates of larval menhaden in the Chesapeake Bay in 2005-2008 

differed from peak hatch dates of surviving juveniles in summers of 2006-2008, based on 

otolith-aging analysis of juveniles from Virginia and Maryland sub-estuaries in the Bay 

(Secor and Wingate unpublished data; Houde et al. 2009).  Hatch dates of larval 

menhaden peaked in the October to December period but the hatch dates of juvenile 

survivors peaked in the January - February period.  This suggests that, although there 

were strong contributions to ingress of menhaden larvae to Chesapeake Bay from 

hatching in October - December, survival of these early-hatched individuals was low in 
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the years of my research.  Menhaden hatched in the October - December period entered 

the Bay as late-stage larvae from November - February.  Temperatures experienced by 

larvae upon entrance to Chesapeake Bay in the December – February period were the 

coldest observed in each of the three years.  It is possible that under such conditions 

survival of ingressing menhaden larvae hatched in October-December was lower than 

survival of ingressing larvae hatched in late winter but ingressing to the Bay in the late 

February to April period.   

Light and Able (2003) and Warlen et al. (2002) also reported recruitment of 

menhaden into mid-Atlantic estuaries with spawn dates in the winter period when 

spawning is thought to occur in the SAB.  They speculated that northward transport was 

possible by entry of the larvae into the Gulf Stream.  Checkley et al. (1988) reported 

catches of small menhaden larvae off North Carolina near the western edge of the Gulf 

Stream.  This mechanism is possible, although the processes that allow larvae to leave the 

Gulf Stream and disperse toward estuaries were not described.  

The mean, age-specific growth rates of menhaden larvae, estimated from the 

Laird-Gompertz models fit to data in each year, exceeded 0.50 mm/d in the first 50 days 

posthatch.  This mean growth rate was similar to the mean growth rate (0.48 mm/day) 

directly measured from otolith aging of small menhaden larvae off North Carolina by 

Maillet and Checkley (1991).  In each of the three years of my research, fastest growth 

occurred in the 21-30 day-old period.  Growth rates of larvae older than 50 days clearly 

declined.  My growth rates and patterns differed to a degree from those reported and 

summarized by Warlen (1992).  His Laird-Gompertz model and derived growth rates 

indicated fastest growth in the 1-20 day age interval, with declines thereafter.  In my 
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study, mean growth rates increased in each 10-day age interval until 30 days post-hatch 

(Table 3.3).  The difference in estimated growth rates of younger larvae between the 

Warlen (1992) study and mine could be in part an artifact.  Relatively few young larvae 

were available in my research, which required forcing the Laird-Gompertz model through 

the y-intercept at 3.6 mm, the known size-at-hatch of menhaden larvae, to obtain a fit and 

estimates of growth rates for larvae < 20 days old, which were hardly represented in my 

samples (Figure 3.3).   

The Laird-Gompertz parameter, k, was significantly higher in 2006-07 compared 

to 2007-08, indicating a faster rate of decay from the initial instantaneous growth rate, 

although not necessarily faster growth, which was faster in 2006-07 than in other years 

(see Table 3.3).  The inter-annual variability in the parameter k indicates differences in 

growth rates.  Inter-annual differences in growth rates of gulf menhaden larvae have been 

reported (Warlen 1988).  The mean growth rates of gulf menhaden larvae from the Gulf 

of Mexico in the first 60 days after hatch was 0.39 mm/day (Warlen 1988), rates slower, 

on average, than those I estimated for Atlantic menhaden at the Chesapeake Bay mouth.  

Warlen (1988) attributed inter-annual differences in growth rates of gulf menhaden larvae 

to inter-annual variability in offshore conditions, especially temperature.   

Estimates of growth of larval menhaden collected at the Chesapeake Bay mouth 

represent primarily growth that had occurred during the oceanic phase under warmer 

temperature conditions than those near the Chesapeake Bay mouth.  I had no measure of 

inter-annual variability in offshore environmental conditions or direct estimates of growth 

in early-stage larvae from offshore that likely had a strong influence on overall growth 
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dynamics and patterns apparent in larvae collected at the Bay mouth. Obtaining such 

information is an important need in future research.  

The weight-on-length relationship in late-stage menhaden larvae undergoes an 

ontogenetic shift that already was apparent in some of the larger larvae collected at the 

mouth of Chesapeake Bay.  The allometric coefficient in the power model describing the 

weight-length relationship increased at a break-point length of 27.69 mm TL.  Lewis et 

al. (1972) reported that morphometrics in young Atlantic menhaden collected from North 

Carolina, had two inflection points.  The first point, at 30 mm TL, was described as 

denoting the onset of metamorphosis to the juvenile stage.  This pre-juvenile stage 

encompassed the 30 - 38 mm TL range.  Balon (1984) designated this period of growth, 

in Atlantic menhaden and other fishes, as saltatory, indicative of a period in ontogeny 

when rapid changes in form and function are observed.  In the pre-juvenile stage of 

Atlantic menhaden, rate of increase in body depth is rapid (Lewis et al. 1972).  Other, 

quite drastic, ontogenetic changes occur during metamorphosis in the gill structures and 

alimentary tract in preparation for a diet shift from predation on zooplankton to filter-

feeding on phytoplankton (June and Carlson 1971).  Changes in the alimentary tract 

began at about 31 mm FL (= 33 mm TL) for larval Atlantic menhaden collected at the 

Indian River Inlet, Delaware (June and Carlson 1971).  The estimated size of change in 

allometric body growth of 27.69 mm TL for larvae pooled over the three years of my 

study occurred at a  smaller size than reported by Lewis et al. (1972) (30 mm TL).  The 

estimated break points in the weight-length relationships in each year of my study 

indicated variability in estimates of the length at inflection among years.  The break 

points were 29.00 mm TL in 2005-06, 27.56 mm TL in 2006-07, and 34.23 mm TL in 
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2007-08.  The break point reported by Lewis et al. (1972) at 30 mm TL was derived from 

a single year of data whereas the mean inflection point (at 27.69 mm TL) from my study 

was from three years of data.  The average break point taken from my three individual 

years is 30.26 mm TL, a value similar to that of Lewis et al.   

 Ten different prey types were identified in the diets of larval Atlantic menhaden.  

In each year, 2 or fewer prey types dominated, composing > 70% of larval menhaden 

diets.  Copepods were the most common prey, accounting for > 60% of the prey, by 

number, in the larval diets for each year.  Copepods were reported to compose 99% of the 

diet in larval menhaden from the Newport River estuary, North Carolina (Kjelson et al. 

1975) and from Indian River Inlet, Delaware (June and Carlson (1971).  Copepods are 

usually reported as the most common prey of coastal and estuarine larval fishes.  For 

example, the most common prey of larvae of 12 species in Biscayne Bay, Florida, was 

copepods and copepod nauplii (71%) (Houde and Lovdal 1984).  Copepods often are 

reported to be preferred prey for larvae of clupeoid fishes such as herring Clupea 

harengus (Hardy 1924; Bowers and Williamson 1951).  The diet of small (< 9 mm 

notochord length NL) gulf menhaden larvae was a combination of zooplankton and 

phytoplankton (Stoecker and Govoni 1984).  In the Gulf of Mexico, gulf menhaden < 6 

mm TL were shown to mostly feed on copepods and phytoplankters (Govoni et al. 1983).  

In the same region, spot and Atlantic croaker had fed almost exclusively on zooplankters 

(Govoni et al. 1983).  Govoni et al. (1983) noted that the diets of small gulf menhaden 

larvae shifted to feeding exclusively on zooplankton as they grew.   

Although diet studies on larval menhaden are uncommon, results from the present 

study apparently are unique in that prey types other than copepods were at least 
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moderately important in larval menhaden diets at the Chesapeake Bay mouth.  Barnacle 

nauplii, cladocerans, and bivalve larvae were substantial components of the diet.  In each 

year, barnacle nauplii were second in percent composition, by number.  Cladocerans 

ranked third in percent composition in 2005-06 and 2007-08 but bivalve larvae were third 

in number in 2006-07.  None of these zooplankters were reported in diet studies on 

menhaden larvae of the same size by June and Carlson (1971) for larvae from the 

Delaware Bay or by Kjelson et al. (1975) for larvae in North Carolina estuaries.   

The diets of larval Atlantic menhaden at the mouth of the Chesapeake Bay largely 

were representative of the proportional representation of prey available to them near the 

Bay mouth.  The larvae did not appear to be highly selective in their feeding.  Three of 

the top four prey types in larval guts (copepods, barnacle nauplii, and cladocerans) also 

occurred at the highest mean concentrations in zooplankton samples at the Chesapeake 

Bay mouth.  The concentration of bivalve larvae at the Bay mouth was relatively low but 

was highest in 2006-07 and in 2007-08, the years when they were most common in larval 

guts.  The numerical abundance of mesozooplankton at the Bay mouth was dominated by 

copepods during the three-year study.  The annual prey selectivity index (Strauss 1979) 

values I derived did not surpass a value of ± 0.24 for any of the prey in any year and did 

not differ significantly from zero.  Monthly Strauss index values for each of the top four 

prey types did not surpass a value of ± 0.47 and only two monthly values were 

significantly different from zero.   

Inter-annual variability in feeding success did not follow a pattern similar to 

observed differences in zooplankton concentrations.  Zooplankton concentrations also 

were not correlated with larval concentrations at the Bay mouth.  Total zooplankton 
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concentrations were lowest in 2007-08.  However, the number of prey in guts of larval 

menhaden was significantly higher in 2006-07 than in the other two years.  Caution is 

needed when interpreting feeding success of larval Atlantic menhaden.  June and Carlson 

(1971) found that menhaden larvae may instantaneously defecate their gut contents 

during capture.  This is a common occurrence among fish larvae with straight, tube-like 

guts that characterize all clupeoid fish larvae (Blaxter 1965; Hay 1981; Fernandez and 

Gonzalez-Quiros 2006).  Furthermore, June and Carlson (1971) reported that most larval 

gut contents were expelled in violent spasms when living menhaden larvae were placed 

into Formalin solution.  Gut fullness of clupeoid fish larvae has been reported to be lower 

in general than in other taxa (Pepin and Penney 2000). The high percentage of menhaden 

larvae with empty guts (Table 3.7) that I observed probably resulted from stress during 

collection.   

Feeding success of larval menhaden that I analyzed was length-dependent as has 

been demonstrated for most fish larvae (Miller et al. 1988).  Number of prey per gut 

increased exponentially as larval length increased, indicating a rapid increase in feeding 

success as larvae grew.  The probability of larvae having at least one prey item in their 

guts was also length-dependent.  This relationship differed inter-annually.  The 

probability of successful feeding by larvae increased at a faster rate in 2005-06, with 

respect to total length, than in the other two years.   

In this research I have shown that the mean time from hatch to estuarine ingress to 

Chesapeake Bay was 47 days and that most ingressing larvae had hatched in the 

November – December period.  Back-calculated peak hatch-dates of larval menhaden 

ingressing to Chesapeake Bay were poorly represented in YOY juvenile menhaden 
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sampled during summer months suggesting selective survival that favored late-hatched 

larvae in the 2005-2008 period.  Mean growth during the oceanic phase of larval Atlantic 

menhaden, estimated from growth models, varied inter-annually but ranged from 0.52 to 

0.57 mm/day.  Atlantic menhaden experience a saltatory change in allometry of body 

growth between 27 and 35 mm TL that, combined with the low temperatures encountered 

near the Bay mouth, may be the principal causes of declining growth rates.  As menhaden 

larvae grow larger their feeding success increases.  In the Chesapeake Bay, larval 

menhaden fed predominantly on copepods, but other prey types not previously reported 

in diet studies on larval menhaden were commonly eaten.  It would be valuable to 

establish a consistent sampling program for larval menhaden at the Chesapeake Bay 

mouth to monitor ingress of menhaden larvae, its inter-annual variability, the condition, 

growth and ages of ingressing larvae, and the relationship to late-summer abundance of 

YOY juveniles in the Bay.  Additionally, a program to determine the offshore dynamics 

of spawning, egg and larvae ecology, and transport pathways would greatly expand our 

knowledge of recruitment processes in Atlantic menhaden.   
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Table 3.1.  Mean ages (days) of Atlantic menhaden larvae from otolith-aged larvae 
collected at the Chesapeake Bay mouth during the three-year program.  The column 
‘Tukey’ is the outcome of the Tukey Honestly Significant Difference multiple 
comparisons tests.  Mean age sharing a letter do not differ significantly.  
 

 
  

2430.56A46.032007-08
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nseTukeyMean AgeYear
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nseTukeyMean AgeYear



 128

Table 3.2.  Mean ages of Atlantic menhaden larvae from otolith-aged larvae collected at 
the Chesapeake Bay mouth during the three-year program.  The column ‘Tukey’ is the 
outcome of the Tukey Honestly Significant Difference multiple comparisons tests.  Mean 
ages for cruise months sharing a letter do not differ significantly.   
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Table 3.3.  Mean growth rates (ĝ = mm/d) at 10-day age intervals for Atlantic menhaden 
larvae.  Growth rates were calculated from Laird-Gompertz growth-model fits in each 
year (Figure 3.3).   
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Table 3.4.  Prey types and frequency of occurrence in the guts of Atlantic menhaden 
larvae collected at the Chesapeake Bay mouth in the three-year program.   
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Table 3.5.  Percentages (by number) of total prey by prey type in the guts of Atlantic 
menhaden larvae collected at the Chesapeake Bay mouth in the three-year program.   
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Table 3.6.  Monthly percent of total prey by prey type in the guts of Atlantic menhaden 
larvae collected at the Chesapeake Bay mouth in the three-year program.   
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Table 3.7.  The percentage of Atlantic menhaden larvae with at least one prey item in 
their guts, i.e., ‘prey incidence’ for each month that was sampled at the Chesapeake Bay 

mouth.     
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Table 3.8. Test of independence for the proportion of Atlantic menhaden larvae that had 
at least one prey (prey column) in their gut relative to the number with empty guts 
(empty) in the three-year program.  The column ‘tot’ is the total number of fish in each 
year, p̂  is the proportion of larvae with prey in their gut and p̂  (prey) is that proportion 
multiplied by the number of larvae with prey in their gut.   

 
 
  
 
 

df = 2

p < 0.00174.15Chi-square =

235.190.55768343425tot

253.52

37.140.39243148952007-08

142.600.77240551852006-07
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(prey)totemptyprey
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Table 3.9.  Test of independence for the proportion of larval Atlantic menhaden that had 
at least one prey in their gut (prey) relative to the number with empty guts (empty) among 
cruise months in a) 2005-06, b) 2006-07, and c) 2007-08.  The column ‘tot’ is the total 
number of fish in each month, p̂  is the proportion of larvae with prey in their gut and p̂  
(prey) is that proportion multiplied by the number of larvae with prey in their gut.   
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Table 3.10.  Logistic regression summary table for the probability of an Atlantic 
menhaden larva having at least one prey item in its gut as a function of larva length, year, 
and the interaction of larva length and year.  The Estimate column provides estimates of 
the model coefficients, SE is standard error, z is z-score, and Pr(> |z|) is the p-value.   
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< 0.0014.434.957.6Year

< 0.0017.180.050.35Total Length
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Table 3.11.  Mean total zooplankton concentrations (number per m3) at the mouth of the 
Chesapeake Bay in the three-year program.  The column labeled months represents the 
total number of cruise months included in the analysis.  The column ‘Tukey’ is the 
outcome of the Tukey Honestly Significant Difference multiple comparisons tests.  Mean 
concentrations differed significantly among years (Tukey column; different letters 
indicate significant differences).   

 
 
 

583116.79A1164.512007-08

6101226.81A1618.262006-07

583130.81A1664.562005-06

MonthsnseTukeyMean ConcentrationYear

583116.79A1164.512007-08

6101226.81A1618.262006-07

583130.81A1664.562005-06

MonthsnseTukeyMean ConcentrationYear
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Table 3.12.  Mean total zooplankton concentrations (number per m3) by month at the 
mouth of the Chesapeake Bay during the three-year program.  The ‘n’ column represents 
the number of samples used to calculate the mean. The column ‘Tukey’ is the outcome of 
the Tukey Honestly Significant Difference multiple comparisons tests.  Mean 
concentrations for cruise months sharing a letter do not differ significantly.   

 
 

19180.71A1827.99Apr '08

16165.16A1493.37Mar '08

9551.33A985.37Jan '08
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1460.08B574.84Dec '06

191003.44A2582.18Nov '06

20401.5A2517.41Apr '06

10112.83A1227.63Mar '06

22168.13A1798.83Feb '06

17174.89A1420.21Jan '06

14172.04A844.02Dec '05

nseTukeyMean ConcentrationMonth
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20215.61AB898.22Feb '07

10214.36AB1452.05Jan '07

1460.08B574.84Dec '06

191003.44A2582.18Nov '06

20401.5A2517.41Apr '06

10112.83A1227.63Mar '06

22168.13A1798.83Feb '06

17174.89A1420.21Jan '06

14172.04A844.02Dec '05

nseTukeyMean ConcentrationMonth
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Table 3.13.  Zooplankton taxa composition (percent by number) at the Chesapeake Bay 
mouth during 2005-08.   
 

 
  

4.27.51.8Other

1.61.60.1Bivalve larvae

13.011.320.9Barnacale nauplii

1.25.56.7Cladocerans

80.074.170.5Copepods

2008-092006-072005-06Zooplankton

4.27.51.8Other

1.61.60.1Bivalve larvae

13.011.320.9Barnacale nauplii

1.25.56.7Cladocerans

80.074.170.5Copepods

2008-092006-072005-06Zooplankton
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Table 3.14.  Monthly zooplankton taxa composition (percent by number) at the 
Chesapeake Bay mouth during the three-year program.   

 
 

1.370.4828.033.9466.18Apr '08

1.400.1518.390.5979.47Mar '08

65.1800.360.5033.96Feb '08
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1.860.152.223.4092.37Dec '05

OtherBivalve larvaeBarnacle naupliiCladoceransCopepodsCruise
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9.281.752.570.3486.06Nov '07

1.43036.255.5556.77Apr '07

1.990.545.091.6590.73Mar '07

10.492.349.461.0376.68Feb '07

1.830.137.1337.3353.58Jan '07

7.727.249.021.8374.19Dec '06

18.220.073.530.8277.36Nov '06

1.010.0216.745.6076.63Apr '06

1.960.0212.893.3881.75Mar '06
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Table 3.15.  Strauss selectivity index values for the four most common prey found in the 
guts of Atlantic menhaden larvae during the three-year program.   

 
 

+0.05+0.01+0.03-0.12007-08

+0.12-0.010-0.062006-07

+0.01+0.12+0.07-0.242005-06

Bivalves larvaeBarnacle naupliiCladoceransCopepodsYear

+0.05+0.01+0.03-0.12007-08

+0.12-0.010-0.062006-07

+0.01+0.12+0.07-0.242005-06

Bivalves larvaeBarnacle naupliiCladoceransCopepodsYear
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Table 3.16.  Strauss selectivity index values for the four most common prey found in the 
guts of Atlantic menhaden larvae for monthly cruises during the three-year program.  
Index values significantly different from zero (t-test) are in boldface.   

 
  
 

0-0.12+0.110Apr '08

+0.02+0.16-0.01-0.21Mar '08

+0.12-0.090-0.12Jan '08

+0.08-0.0200Dec '07
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0-0.13+0.47-0.32Mar '06

+0.02+0.06+0.01-0.18Feb '06

0+0.02+0.04-0.03Jan '06

00+0.1-0.12Dec '05

Bivalve larvaeBarnacle naupliiCladoceransCopepodsCruise
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+0.09-0.01+0.03-0.06Nov '07

0-0.09-0.03+0.08Apr '07

-0.01-0.05-0.02+0.09Mar '07

+0.08-0.04+0.040Feb '07

0+0.04-0.01-0.07Jan '07

+0.32+0.03+0.02-0.29Dec '06

0-0.04-0.01+0.23Nov '06

0+0.03+0.34-0.36Apr '06

0-0.13+0.47-0.32Mar '06

+0.02+0.06+0.01-0.18Feb '06

0+0.02+0.04-0.03Jan '06

00+0.1-0.12Dec '05

Bivalve larvaeBarnacle naupliiCladoceransCopepodsCruise
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Figure 3.1.  Box-whisker plots of mean ages of otolith-aged Atlantic menhaden larvae 
collected at the Chesapeake Bay mouth during the three-year program.  The boxes 
represent the two inter-quartiles and the whiskers extend to the extreme ages.  The 
horizontal line subdividing each box represents the median and the white circle the mean.   
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Figure 3.2.  Back-calculated hatch-date frequency distributions for Atlantic menhaden 
larvae collected at the Chesapeake Bay mouth during the three-year program.  The 
frequencies are mortality- and effort-adjusted numbers of larvae in 1-day hatch-date bins.   
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Figure 3.3.  Laird-Gompertz model fits to length-on-age relationships for otolith-aged 
Atlantic menhaden larvae collected at the Chesapeake Bay mouth in a) 2005-06, b) 2006-
07, and c) 2007-08.  
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Figure 3.4.  Weight-length relationships of Atlantic menhaden larvae collected over three 
years at the Chesapeake Bay mouth using a) a power regression model, and b) a piece-
wise regression model.  The vertical dotted line indicates the predicted breakpoint c = 
27.69 mm.  In figure b) the top equation is the fitted model for lengths < c and the second 
equation is for lengths ≥ c.  The data is color coded by year in figure b).   
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Figure 3.5.  Percent cumulative frequency by number of prey types found in the guts of 
Atlantic menhaden larvae collected at the Chesapeake Bay mouth in the three-year 
program.  The horizontal red lines represent 70 percent of the larval Atlantic menhaden 
diet.   
 

1 2 3 4 5 6 7 8 9 10 11

0
20

40
60

80
10

0
2007-08

1 2 3 4 5 6 7 8 9 10 11

0
20

40
60

80
10

0

2006-07

1 2 3 4 5 6 7 8 9 10 11

0
20

40
60

80
10

0

2005-06

%
 C

um
ul

at
iv

e 
Fr

eq
ue

nc
y

70%

n = 285 n = 240

n = 243

Number of Prey Types

a. b.

c.

1 2 3 4 5 6 7 8 9 10 11

0
20

40
60

80
10

0
2007-08

1 2 3 4 5 6 7 8 9 10 11

0
20

40
60

80
10

0

2006-07

1 2 3 4 5 6 7 8 9 10 11

0
20

40
60

80
10

0

2005-06

%
 C

um
ul

at
iv

e 
Fr

eq
ue

nc
y

70%

n = 285 n = 240

n = 243

Number of Prey Types
1 2 3 4 5 6 7 8 9 10 11

0
20

40
60

80
10

0
2007-08

1 2 3 4 5 6 7 8 9 10 11

0
20

40
60

80
10

0

2006-07

1 2 3 4 5 6 7 8 9 10 11

0
20

40
60

80
10

0

2005-06

%
 C

um
ul

at
iv

e 
Fr

eq
ue

nc
y

70%

n = 285 n = 240

n = 243

Number of Prey Types

a. b.

c.



 148

 
Figure 3.6.  Mean number of each prey type per larval gut for Atlantic menhaden larvae 
collected at the mouth of the Chesapeake Bay in the three-year program.  1= tunicate 
larvae, 2 = metatrochophore, 3 = bivalve larvae, 4 = copeod, 5 = copepod nauplii, 6 = 
ostracod, 7 = cladoceran, 8 = barnacle nauplii, 9 = polychaete larvae, 10 = decapod, 11 = 
digested material.   
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Figure 3.7.  Monthly percentage prey composition in the diets of Atlantic menhaden 
larvae collected at the Chesapeake Bay mouth during a) 2005-06, b) 2006-07, and c) 
2007-08.   
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Figure 3.8.  Logistic regressions relating probability of at least one prey in the gut of an 
Atlantic menhaden larva and larva length.  The logit probability regressions are given for 
each year.   
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Figure 3.9.  Feeding success, defined as mean number of prey per gut, for Atlantic 
menhaden larvae collected at the Chesapeake Bay mouth in the three-year program.   
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Figure 3.10.  Mean total number of prey per larva by length intervals for larval Atlantic 
menhaden in relation to total length (mm).  The < 10 mm length bin is represented by a 
single fish.   
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Figure 3.11.  Arithmetic mean total zooplankton concentrations at the mouth of the 
Chesapeake Bay during the three-year program. (December to April 2005-06; November 
to April 2006-07 and 2007-08)  
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Figure 3.12.  Mean zooplankton concentrations by zooplankton taxon for a) 2005-06, b) 
2006-07, and c) 2007-08.  The taxa are 1) Acartia, 2) Centropages, 3) Calanus, 4) 
Oithona, 5) Evadne 6) Podon, 7) Balanus, and 8) Gastropod veligers.   
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Figure 3.13.  Surface water temperatures offshore of Chesapeake Bay from early 
September through early April in 2005-06, 2006-07, and 2007-08.  The horizontal red 
line is 12 oC.  The data represents real time water temperature measurements taken from 
Virginia Light Buoy (36o54’35” N 75o42’35” W), NOAA National Data Buoy Center.    
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Chapter 4: Conclusions, Summary, and Synthesis 

 

Conclusions 

 Recruitment of young-of-the-year (YOY) Atlantic menhaden in Chesapeake Bay 

and other estuaries relies, in part, on the supply of larvae from the coastal ocean.  It was 

hypothesized that supply would vary inter-annually at the Chesapeake Bay mouth. 

Recruitment levels of YOY menhaden in Chesapeake Bay have been low since a decline 

occurred in the late 1980s.  In my three-year study annual and monthly ingress levels 

were variable, as hypothesized, with mean concentrations differing nine-fold among 

years.  Overall variability in inter-annual ingress levels was in large part attributed to 

highly variable monthly ingress patterns.  The two years of moderate or high ingress 

levels (2005-06 and 2007-08, respectively) experienced relatively high monthly ingress 

in the November-February period unlike 2006-07 when ingress was high only in 

February.  Ingress was low during April in each of the three years.  For levels of ingress 

observed in the three years of this program, inter-annual patterns were not concordant 

with YOY recruitment levels in the Bay that differed only two-fold. 

 No clear spatial patterns in either vertical distribution or horizontal distribution 

across the mouth of Chesapeake Bay were observed.  Larvae were more abundant, on 

average, above the pycnocline in 2005-06 but did not differ in mean concentration above 

or below the pycnocline in the other two years.  There were no differences in mean larval 

concentrations among the five stations along a sampling transect across the mouth of 

Chesapeake Bay, although there were day-to-day differences.  Patterns of larval 

occurrence with respect to tide stages were not clearly predictable, although there was a 
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tendency for estimated larval concentrations to be higher on flooding tides compared to 

ebbing tide stages.  Menhaden larvae were more abundant in night catches, a pattern 

often described in ichthyoplankton surveys, possibly because sampling is more efficient 

and escapement by larvae is lower at night.   

 Mean age-at-ingress, an indicator of the period of transport from offshore to 

Chesapeake Bay, differed significantly inter-annually although differences were 

relatively small.  Monthly frequency distributions of larval ages-at-ingress were 

consistent (mostly 30 to 60 days post-hatch) and did not exhibit a seasonal pattern as 

reported for ingress of Atlantic menhaden larvae in North Carolina estuaries (Warlen 

1992).  Ingress of menhaden into Chesapeake Bay was mostly the result of spawning on 

the continental shelf before mid-December.  Larvae hatched in the December-February 

period probably originated south of Cape Hatteras where spawning activity is reported to 

occur during this period (Higham and Nicholson 1964; Judy and Lewis 1983).   

 Growth rates of Atlantic menhaden larvae that were ingressing into Chesapeake 

Bay were similar to reported rates of Atlantic menhaden ingressing into other estuaries 

(Maillet and Checkley 1991; Warlen 1992).  The growth coefficient in Laird-Gompertz 

models fit to the length-at-age data differed significantly, but not greatly, among years 

and was highest in 2006-07, the year of lowest ingress.  In all years, age-specific growth 

rates were highest for larvae in the 21-30 days post-hatch age interval.  Age-specific 

growth rates steadily declined after 30 days post-hatch.  A shift in the allometric power 

coefficient describing the weight-length relationship of larvae was evident at a mean total 

length of 27.7 mm, which is near the size described as the length at onset of 

metamorphosis in previous studies (Lewis et al. 1972; Balon 1984).   
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 The dominant prey type of menhaden larvae at the Chesapeake Bay mouth was 

copepods in each year.  Only two prey types accounted for more than 70% by number of 

the larval menhaden diet in each of the three years.  The four most common prey types in 

larval diets were also the four most common types of zooplankton available at the Bay 

mouth.  The probability of feeding and feeding success increased with larval size.   

 

Chapter 2 Summary: Larval Ingress  

 Ingress was lowest in 2006-07, highest in 2007-08 and intermediate in 2005-06. 

The arithmetic mean ingress concentration of menhaden larvae was nine times higher in 

2007-08 than in 2006-07.  In the 2005-06 and 2006-07 ingress years, monthly ingress 

levels were highest in February 2006 and 2007.  But, in the 2007-08 year, ingress was 

highest in December 2007.  Ingress in 2006-07 was consistently low, except for February 

2007.  Ingress levels were low in April of each year.  Mean concentrations were 2.32 

larvae/100 m3 in 2005-06, 0.90 larvae/100 m3 in 2006-07 and 8.44 larvae/100 m3in 2007-

08.  Mean larval concentrations were higher above the pycnocline in 2005-06, but were 

evenly distributed in the water column in the other two years.  Mean larval concentrations 

did not differ among sampling stations across the mouth of the Chesapeake Bay.  Larvae 

were significantly less abundant during ebbing tides in 2007-08 but no differences in 

mean concentrations were observed among tide stages in the other two years.  Larvae 

were significantly more abundant at night; the mean concentration over the three-year 

study was 7.35 larvae/ m3 at night but 1.35 larvae/ m3 during the day, suggesting that the 

larvae were more vulnerable and/or available to the Tucker trawl at night.   
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Chapter 3 Summary   

 Mean age at ingress was significantly older in 2006-07 (50 days) compared to 

2005-06 (44 days) and 2007-08 (46 days).  Monthly mean ages at ingress tended to be 

younger in November and December than later in the season.  Monthly mean ages at 

ingress ranged from 31 to 63 days.  Hatch dates ranged from late September to mid-

March in all years.  More than 90% of larvae ingressing into Chesapeake Bay had hatch 

dates prior to 15 December in each of the three years.  Mean growth rates of larvae 

through the first 50 days of life, derived from Laird-Gompertz models, were > 0.50 

mm/day in each year.  Fastest growth rates occurred in the 21-30 days post-hatch period, 

with substantial declines in growth rates of larvae older than 30 days.  The Laird-

Gompertz growth coefficient, k, was significantly higher in 2006-07 compared to 2007-

08.  Weight-length relationships shifted during growth and ontogeny, experiencing a 

breakpoint in allometry at 27.7 mm total length, indicating onset of metamorphosis.   

 The most common prey of larval menhaden at the Bay mouth is copepods.  

Barnacle nauplii, cladocerans, and bivalve veligers were also common in larval 

menhaden diets.  Larval menhaden diets largely reflected what was available to them in 

the zooplankton at the mouth of Chesapeake Bay.  Variability in feeding success did not 

follow a pattern similar to fluctuations in zooplankton concentrations at the Bay mouth.  

Highest feeding incidence and feeding success were observed in 2006-07 when mean 

zooplankton concentrations were lowest.  Feeding success and the probability of 

successful feeding increased with respect to larval length in each year.    
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Synthesis   

 In this study, ingress, age at ingress, feeding incidence and success, and growth 

all experienced some degree of inter-annual variability.  Unexpectedly, the year of lowest 

ingress, 2006-07, was the year when age at ingress was oldest, feeding success was 

highest, and growth rate was fastest.  Age-at-ingress and growth rates both were highest 

in 2006-07 indicating that size was larger and ontogenetic stage of larvae was more 

advanced at the Bay mouth in this year.  Feeding was size-dependent in each year but the 

most successful feeding, observed in 2006-07, did not correspond with 2007-08, the year 

when larvae were most abundant and had greatest mean larval length.  

 Level of larval ingress of menhaden did not correspond to subsequent YOY 

recruitment levels of juveniles in Chesapeake Bay, as indexed by the Maryland 

Department of Natural Resources juvenile index surveys 

(http://dnr.maryland.gov/fisheries/juvindex/index.asp).  The 9-fold variability in larval 

ingress levels did not correspond to similar variability in YOY recruitment levels, which 

were low in each of the three years.  At the ingress levels and variability observed, other 

factors such as mortality during the juvenile stage after ingress may be more important 

controllers of recruitment than abundance at ingress.  In the 1970s, YOY recruitment 

levels in the Chesapeake Bay were both higher and more variable than in the most recent 

20 years.  It is possible that levels of larval abundance presently observed at the Bay 

mouth are substantially lower than levels decades ago when menhaden recruitments were 

higher, but there are no surveys or data to corroborate that possibility.  Measures of 

ingress, if monitored annually, could be important to understand the relationship between 
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larval supply and recruitment under variable and changing climate regimes that likely are 

occurring.   
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